Skip to main content

Numerics of Fluid-Structure Interaction

  • Chapter

Part of the book series: Oberwolfach Seminars ((OWS,volume 37))

Abstract

This chapter describes numerical methods for simulating the interaction of viscous liquids with rigid or elastic bodies.

General examples of fluid-solid/structure interaction (FSI) problems are flow transporting rigid or elastic particles (particulate flow), flow around elastic structures (airplanes, submarines) and flow in elastic structures (hemodynamics, transport of fluids in closed containers). In all these settings the dilemma in modeling the coupled dynamics is that the fluid model is normally based on an Eulerian perspective in contrast to the usual Lagrangian formulation of the solid model. This makes the setup of a common variational description difficult. However, such a variational formulation of FSI is needed as the basis of a consistent Galerkin discretization with a posteriori error control and mesh adaptation, as well as the solution of optimal control problems based on the Euler-Lagrange approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bänsch and W. Dörfler, Adaptive finite elements for exterior domain problems. Numer. Math. 80 (1998), 497–523.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bangerth and R. Rannacher, Adaptive Finite-Element Methods for Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel 2003.

    Google Scholar 

  3. R. Becker and M. Braack, A finite-element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001), 173–199.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Becker, M. Braack, and D. Meidner: Gascoigne: A C++ numerics library for scientific computing. Institute of Applied Mathematics, University of Heidelberg, URL http://www.gascoigne.uni-hd.de/.

  5. R. Becker and Th. Dunne, VisuSimple: An interactive visualization utility for scientific computing. Abschlußband SFB 359, Reactive Flows, Diffusion and Transport (W. Jäger et al., eds.), Springer, Berlin-Heidelberg New York, 2007.

    Google Scholar 

  6. R. Becker, V. Heuveline, and R. Rannacher, An optimal control approach to adaptivity in computational fluid mechanics. Int. J. Numer. Meth. Fluids. 40 (2002), 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Becker and R. Rannacher, An optimal control approach to error estimation and mesh adaptation in finite-element methods. Acta Numerica 2000 (A. Iserles, ed.), pp. 1–102, Cambridge University Press, 2001.

    Google Scholar 

  8. A. Belmonte, H. Eisenberg, and E. Moses, From flutter to tumble, Inertial drag and froude similarity in falling paper. Phys. Rev. Lett. 81 (1998), 345–348.

    Article  Google Scholar 

  9. S. Bönisch, Adaptive Finite-Element Methods for Rigid Particulate Flow Problems. Doctoral thesis, Institute of Applied Mathematics, University of Heidelberg, 2006.

    Google Scholar 

  10. S. Bönisch and V. Heuveline, On the numerical simulation of the instationary free fall of a solid in a fluid. I. The Newtonian case. Computer & Fluids 36 (2007), 1434–1445.

    Article  Google Scholar 

  11. S. Bönisch and V. Heuveline, On the numerical simulation of the free fall of a solid in a fluid. II. The viscoelastic case. SFB Preprint 2004-32, University of Heidelberg, 2004.

    Google Scholar 

  12. S. Bönisch and V. Heuveline, Advanced flow visualization with HiVision. Abschlußband SFB 359, Reactive Flows, Diffusion and Transport (W. Jäger et al., eds.), Springer, Berlin-Heidelberg New York, 2007.

    Google Scholar 

  13. S. Bönisch, V. Heuveline, R. Rannacher, Numerical simulation of the free fall problem. Proc. Int. Conf. on High Performance Scientific Computing (HPSCHanoi 2003), Hanoi, March 2003, (H.G. Bock, et al., eds.), Springer, Berlin-Heidelberg, 2005.

    Google Scholar 

  14. S. Bönisch, V. Heuveline und P. Wittwer: Adaptive boundary conditions for exterior flow problems, J. Math. Fluid Mech. 7 (2005), 85–107.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Bönisch, V. Heuveline und P. Wittwer: Second order adaptive boundary conditions for exterior flow problems: non-symmetric stationary flows in two dimensions, J. Math. Fluid Mech. 8 (2006), 1–26.

    Article  MathSciNet  Google Scholar 

  16. M. Braack and E. Burman: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), 2544–2566.

    MathSciNet  MATH  Google Scholar 

  17. R. Bürger, R. Liu, and W.L. Wendland, Existence and stability for mathematical models of sedimentation-consolidation processes in several space dimensions. J. Math. Anal. Appl. 264 (2001), 288–310.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Conca, J.S. Martin, and M. Tucsnak, Existence of the solutions for the equations modelling the motion of rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019–1042.

    Article  MATH  Google Scholar 

  19. B. Desjardin and M. Esteban, Existence of weak solutions for the motion of rigid bodies in viscous fluids. Arch. Rational Mech. Anal. 46 (1999), 59–71.

    Article  Google Scholar 

  20. Th. Dunne, Adaptive Finite-Element Simulation of Fluid Structure Interaction Based on an Eulerian Formulation. Doctoral thesis, Institute of Applied Mathematics, University of Heidelberg, 2007.

    Google Scholar 

  21. Th. Dunne and R. Rannacher, Adaptive finite-element approximation of fluidstructure interaction based on an Eulerian variational formulation. In ‘FluidStructure Interaction: Modelling, Simulation, Optimisation’ (H.-J. Bungartz and M. Schäfer, eds.), Springer’s LNCSE-Series, 2006.

    Google Scholar 

  22. S.B. Field, M. Klaus, M.G. Moore, and F. Nori Chaotic dynamics of falling disks. Nature 388 (1997), 252–254.

    Article  Google Scholar 

  23. G.P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Rational Mech. Anal. 148 (1999), 53–88.

    Article  MathSciNet  MATH  Google Scholar 

  24. G.P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Handbook of Mathematical Fluid Mechanics (S. Friedlander and D. Serre, eds.), Elsevier, 2001.

    Google Scholar 

  25. G.P. Galdi and A. Vaidya, Translational steady fall of symmetric bodies in a NavierStokes liquid, with application to particle sedimentation. J. Math. Fluid Mech. 3 (2001), 183–211.

    Google Scholar 

  26. G.P. Galdi, A. Vaidya, M. Pokorny, D.D. Joseph, J. Feng, Orientation of bodies sedimenting in a second-order liquid at non-zero Reynolds number. Math. Models Methods Appl. Sci. 12 (2002),1653–1690.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Girault and P.-A. Raviart, Finite-Element Methods for the Navier-Stokes Equations. Springer: Berlin-Heidelberg-New York, 1986.

    MATH  Google Scholar 

  28. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: Application to particulate flow. Int. J. Numer. Meth. Fluids 30 (1999), 1043–1066.

    Article  MATH  Google Scholar 

  29. M.D. Gunzburger, H.C. Lee, and G.A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000), 219–266.

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Heuveline and R. Rannacher, Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis. Proc. Int. Conf. ‘Advances in Numerical Mathematics’, Moscow, Sept. 16-17, 2005 (W. Fitzgibbon et al., eds.), pp. 109–140, Institute of Numerical Mathematics RAS, Moscow, 2006.

    Google Scholar 

  31. V. Heuveline, HiFlow: A multi-purpose finite-element package, Rechenzentrum, Universität Karlsruhe, URL http://hiflow.de/.

  32. V. Heuveline, HiVision: A visualization platform, Rechenzentrum, Universität Karlsruhe, URL http://hiflow.de/.

  33. K.-H. Hoffmann and V.N. Starovoitov, Zur Bewegung einer Kugel in einer zähen Flüssigkeit. Doc. Math. 5 (2000), 15–21.

    MathSciNet  MATH  Google Scholar 

  34. J. Hron and S. Turek, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In ‘Fluid-Structure Interaction: Modelling, Simulation, Optimisation’ (H.-J. Bungartz and M. Schäfer, eds.), in Springer’s LNCSE-Series, 2006.

    Google Scholar 

  35. J. Hron and S. Turek, Fluid-structure interaction with applications in biomechanics. In ‘Fluid-Structure Interaction: Modelling, Simulation, Optimisation’ (H.-J. Bungartz and M. Schäfer, eds.), in Springer’s LNCSE-Series, 2006.

    Google Scholar 

  36. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996), 335–352.

    Article  MATH  Google Scholar 

  37. H.H. Hu, D.D. Joseph, and M.J. Crochet, Direct simulation of fluid particle motions. Theor. Comp. Fluid Dyn. 3 (1992), 285–306.

    Article  MATH  Google Scholar 

  38. T.J.R. Hughes and A.N. Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Meth. Appl. Mech. Engrg. 32 (1982), 199–259.

    Article  MathSciNet  MATH  Google Scholar 

  39. T.J.R. Hughes, L.P. Franc, and M. Balestra, A new finite-element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput. Meth. Appl. Mech. Engrg. 59 (1986), 85–99.

    Article  MATH  Google Scholar 

  40. C. Liu and N.J. Walkington, An Eulerian description of fluids containing visco-elastic particles. Arch. Rat. Mech. Anal. 159 (2001), 229–252.

    Article  MathSciNet  MATH  Google Scholar 

  41. N.A. Patankar, A formulation for fast computations of rigid particulate flows. Center Turbul. Res., Ann. Res. Briefs, 185–196 (2001).

    Google Scholar 

  42. N.A. Patankar, Physical interpretation and mathematical properties of the stress-DLM formulation for rigid particulate flows. Int. J. Comp. Meth. Engrg Sci. Mech. 6 (2005), 137–143.

    Article  Google Scholar 

  43. N.A. Patankar and D.D. Joseph, Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. Int. J. Multiphase Flow 27 (2001), 1659–1684.

    Google Scholar 

  44. N.A. Patankar and D.D. Joseph, Lagrangian numerical simulation of particulate flows. Int. J. Multiphase Flow 27 (2001), 1685–1706.

    Article  MATH  Google Scholar 

  45. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski, and T.-W. Pan, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000), 1509–1524.

    Article  MATH  Google Scholar 

  46. R. Rannacher, Finite-element methods for the incompressible Navier-Stokes equations. In ‘Fundamental Directions in Mathematical Fluid Mechanics’ (G.P. Galdi et al., eds.), pp. 191–293, Birkhäuser, Basel, 2000.

    Google Scholar 

  47. R. Rannacher, Methods for numerical flow simulation. In this volume.

    Google Scholar 

  48. R. Rannacher and F.-T. Suttmeier, Error estimation and adaptive mesh design for FE models in elasto-plasticity. In Error-Controlled Adaptive FEMs in Solid Mechanics (E. Stein, ed.), pp. 5–52, John Wiley, Chichster, 2002.

    Google Scholar 

  49. N. Sharma and N.A. Patankar, A fast computation technique for the direct numerical sim,ulation of rigid particulate flows. J. Comp. Phys. 205 (2005), 439–457.

    Article  MATH  Google Scholar 

  50. T.E. Tezduyar, M. Behr, and J. Liou, A new strategy for finite-element flow computations involving moving boundaries and interfaces-the deforming-spatialdomain/space-time procedures: I. The concept and preliminary tests, II. Computation of free-surface ows, two-liquid ows and ows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering, 1992.

    Google Scholar 

  51. S.V. Tsynkov, Numerical solution of problems on unbounded domains. a review. Appl. Numer. Math. 27 (1998), 465–532.

    Article  MathSciNet  MATH  Google Scholar 

  52. S.V. Tsynkov, External boundary conditions for three-dimensional problems of computational aerodynamics. SIAM J. Sci. Comput. 21 (1999), 166–206.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Turek, Efficient solvers for incompressible flow problems: an algorithmic and computational approach. Springer, Heidelberg-Berlin-New York, 1999.

    MATH  Google Scholar 

  54. S.O. Unverdi and G. Tryggvason, Computations of multi-fluid flows. Physica D 60 (1992), 70–83.

    Google Scholar 

  55. VisuSimple, VisuSimple: An open source interactive visualization utility for scientific computing. Institute of Applied Mathematics, University of Heidelberg, URL http://www.visusimple.uni-hd.de/.

  56. D. Wan and S. Turek, Direct numerical simulstion of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006), 531–566.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Wang, R. Bai, C. Lewandowski, G.P. Galdi, and D.D. Joseph, Sedimentation of cylindrical particles in a viscoelastic liquid: shape-tilting. China Particuology 2 (2004), 13–18.

    Article  Google Scholar 

  58. H.F. Weinberger, On the steady fall of a body in a Navier-stokes fluid. Proc. Symp. Pure Mathematics 23 (1973), 421–440.

    Google Scholar 

  59. P. Wittwer, On the structure of stationary solutions of the Navier-Stokes equations. Commun. Math. Phys. 226 (2002), 455–474.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bönisch, S., Dunne, T., Rannacher, R. (2008). Numerics of Fluid-Structure Interaction. In: Hemodynamical Flows. Oberwolfach Seminars, vol 37. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7806-6_5

Download citation

Publish with us

Policies and ethics