Skip to main content

Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics

  • Chapter
Hemodynamical Flows

Part of the book series: Oberwolfach Seminars ((OWS,volume 37))

Abstract

Blood flow per se is a very complicated subject. Thus, it is not surprising that the mathematics involved in the study of its properties can be, often, extremely complex and challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advani, A.S., Flow and Rheology in Polymer Composites Manufacturing, Elsevier, Amsterdam (1994).

    Google Scholar 

  2. Arada, N. and Sequeira, A., Strong Steady Solutions for a Generalized Oldroy-B Model with Shear-Dependent Viscosity in a Bounded Domain, Math. Mod. and Meth. in Appl. Sci. 13 (2003), 1303–1323.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arada, N. and Sequeira, A., Steady Flows of Shear-Dependent Oldroyd-B Fluids around an Obstacle, J. Math. Fluid Mech. 7 (2005), 451–483.

    Article  MathSciNet  MATH  Google Scholar 

  4. Astarita, G. and Marucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill (1974).

    Google Scholar 

  5. Becker, L.E., McKinley, G.H., and Stone, H.A., Sedimentation of a Sphere Near a Plane Wall: Weak Non-Newtonian and Inertial Effects, J. Non-Newtonian Fluid Mech. 63 (1996), 201–233.

    Article  Google Scholar 

  6. Beirão da Veiga, H., On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem, J. Math. Fluid Mech. 6 (2004), 21–52.

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, H., Time periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains—Leray’s problem for periodic flows. Arch. Ration. Mech. Anal. 178 (2005), 301–325.

    Article  MathSciNet  MATH  Google Scholar 

  8. Beiroãa Veiga, H., On the Regularity of Flows with Ladyzhenskaya Shear-Dependent Viscosity and Slip or Nonslip Boundary Conditions, Comm. Pure Appl. Math. 58 (2005), 552–577.

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, H., On Some Boundary Value Problems for Incompressible Viscous Flows with Shear Dependent Viscosity, Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Vol. 63, Birkhäuser, Basel, 2005, 23–32.

    Google Scholar 

  10. Beirão da Veiga, H., On Some Boundary Value Problems for Flows with Shear Dependent Viscosity, Variational Analysis and Applications Nonconvex Optim. Appl., Vol. 79, Springer, New York, 2005, 161–172.

    Chapter  Google Scholar 

  11. Beirão da Veiga, H., Navier-Stokes Equations with Shear-Dependent Viscosity. Regularity up to the Boundary, J. Math. Fluid Mech., in press.

    Google Scholar 

  12. Berker, R., 1964, Contrainte sur un Paroi en Contact avec un Fluide Visqueux Classique, un Fluide de Stokes, un Fluide de Coleman-Noll, C.R. Acad. Sci. Paris, 285, 5144–5147.

    Google Scholar 

  13. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume I, John Wiley & Sons, second ed. (1987).

    Google Scholar 

  14. Bretherton, F.P.,The motion of a Rigid Particle in a Shear Flow at Low Reynolds Number. J. Fluid Mech. 14 (1962), 284–304.

    Google Scholar 

  15. Bitbol, M., Red Blood Cell Orientation in Orbit C = 0, Biophys. J. 49 (1986), 1055–1068.

    Google Scholar 

  16. Blavier, E._and Mikelić, A., On the Stationary Quasi-Newtonian Flow Obeying a Power Law, Math. Meth. Appl. Sci. 18 (1995), 927–948.

    Article  MATH  Google Scholar 

  17. Bönisch, S. and Galdi, G.P., Lift and Migration of Spheres in a Two-Dimensional Channel, in progress.

    Google Scholar 

  18. Browder, F.E., Existence and Uniqueness Theorems for Solutions of Nonlinear Boundary Value Problems, Proc. Sympos. Appl. Math. 17 Amer. Math. Soc..Providence, R.I., 1965, 24–49.

    Google Scholar 

  19. Carreau, P.J., Rheological equations from molecular network theories, Ph.D. thesis, University of. Wisconsin (1968).

    Google Scholar 

  20. Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C., Existence of Weak Solutions for an Unsteady Fluid-Plate Interaction Problem, J. Math. Fluid Mech. 7 (2005), 368–404.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, W., Trebotich, D., Lee, L.P., and Liepmann, D., Blood Flow in Simple Microchannels, Proceedings of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Lyon, France (2000).

    Google Scholar 

  22. Chhabra R.P., Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press (1993).

    Google Scholar 

  23. Cheng, C.H.A, Cutand, D., and Shkoller, D., Navier-Stokes Equations Interacting with a Nonlinear Elastic Shell (2006), preprint.

    Google Scholar 

  24. Coleman, B.D. and Noll, W., On Certain Steady Flows of General Fluids, Arch. Rational Mech. Anal. 3 (1959), 289–303.

    Article  MathSciNet  MATH  Google Scholar 

  25. Coleman, B.D. and Noll, W., An Approximation Theorem for Functionals with Applications in Continuum Mechanics, Arch. Rational Mech. Anal. 6 (1960), 55–70.

    Article  MathSciNet  Google Scholar 

  26. Coleman, B.D. and Noll, W., Simple Fluids with Fading Memory, Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, Oxford, Pergamon Press, 1962, 530–552.

    Google Scholar 

  27. Coscia, V., and Galdi, G.P., Existence, Uniqueness and Stability of Regular Steady Motions of a Second Grade Fluid, Int. J. Nonl. Mech. 29 (1994), 493–516.

    Article  MathSciNet  MATH  Google Scholar 

  28. Coutand, D., and Shkoller, S., Motion of an Elastic Solid Inside of an Incompressible Viscous Fluid, Arch. Rational Mech. Anal. 176 (2005), 25–102.

    Article  MathSciNet  MATH  Google Scholar 

  29. Coutand, D., and Shkoller, S., On the Interaction Between Quasilinear Elastodynamics and the Navier-Stokes Equations, Arch. Rational Mech. Anal. 179 (2006), 303–352.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ebmeyer, C., Steady Flow of Fluids with Shear-Dependent Viscosity under Mixed Boundary Value Conditions in Polyhedral Domains, Math. Models Methods Appl. Sci. 10 (2000), 629–650.

    MathSciNet  MATH  Google Scholar 

  31. Feireisl, E., On the Motion of Rigid Bodies in a Viscous Incompressible Fluid, J. Evol. Equ. 3 (2003), 419–441.

    Article  MathSciNet  MATH  Google Scholar 

  32. Fontelos, M.A. and Friedman, A., Stationary non-Newtonian Fluid Flows in Channel-Like and Pipe-Like Domains, Arch. Ration. Mech. Anal. 151 (2000), 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  33. Frehse, J., Málek, J., and Steinhauer, M., An Existence Result for Fluids with Shear Dependent Viscosity-Steady Flows, Nonlinear Anal. Th. Methods Appl. 30 (1997), 3041–3049.

    Article  MATH  Google Scholar 

  34. Frehse, J., Málek, J., and Steinhauer, M., On Analysis of Steady Flows of Fluids with Shear-Dependent Viscosity Based on the Lipschitz Truncation Method, SIAM J. Math. Anal. 34 (2003), 1064–1083.

    Article  MathSciNet  MATH  Google Scholar 

  35. Galdi, G.P., Mathematical Theory of Second-Grade Fluids, Stability and Wave Propagation in Fluids and Solids, G.P. Galdi ed., Springer-Verlag, Berlin, 1995, 67–104.

    Google Scholar 

  36. Galdi, G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearised Steady Problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, 2nd Corrected Edition (1998).

    Google Scholar 

  37. Galdi, G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Vol. 39, Springer-Verlag, 2nd Corrected Edition (1998).

    Google Scholar 

  38. Galdi, G.P., 2002, On the Motion of a Rigid Body in a Viscous Liquid: A Mathematical Analysis with Applications, Handbook of Mathematical Fluid Mechanics, North-Holland Elsevier Science, Vol. 1 (2002), 653–792.

    Google Scholar 

  39. Galdi, G.P., Grobbelaar, M. and Sauer, N., Existence and Uniqueness of Classical Solutions of the Equations of Motion for Second-Grade Fluids, Arch. Rational Mech. Anal. 124 (1993), 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  40. Galdi, G.P, and Heuveline, V., Lift and Sedimentation of Particles in the Flow of a Viscoelastic Liquid in a Channel, Free and Moving Boundarie Analysis, Simulation and Control, R. Glowinski and J.-P. Zolesio Eds, CRC Publ., in press.

    Google Scholar 

  41. Galdi, G.P., Pileckas, K. and Silvestre, A.L, Relation Between Pressure-Drop and Flow Rate in Unsteady Poiseuille Flow, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), submitted.

    Google Scholar 

  42. Galdi, G.P., Pokorný, M., Vaidya, A., Joseph, D.D., and Feng, J., Orientation of Symmetric Bodies Falling in a Second-Order Liquid at Non-Zero Reynolds Number, Math. Models Methods Appl. Sci. 12 (2002), 1653–1690.

    Article  MathSciNet  MATH  Google Scholar 

  43. Galdi, G.P., and Robertson, A.M., The Relation Between Flow Rate and Axial Pressure Gradient for Time-Periodic Poiseuille Flow in a Pipe, J. Math. Fluid Mech. 7suppl. 2 (2005), 215–223.

    Article  MathSciNet  Google Scholar 

  44. Galdi, G.P., Sequeira, A. and Videman, J., Steady Motions of a Second-Grade Fluid in an Exterior Domain, Adv. Math. Sci. Appl. 7 (1997), 977–995.

    MathSciNet  MATH  Google Scholar 

  45. Galdi, G.P. and Silvestre, A.L., Existence of Time-Periodic Solutions to the Navier-Stokes Equations Around a Moving Body Pacific J. Math. 223 (2006), 251–268.

    MathSciNet  MATH  Google Scholar 

  46. Galdi G.P., and Vaidya A., Translational Steady Fall of Symmetric Bodies in a Navier-Stokes Liquid, with Application to Particle Sedimentation, J. Math. Fluid Mech. 3 (2001), 183–211.

    Article  MathSciNet  MATH  Google Scholar 

  47. Grandmont, C., Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem, J. Math. Fluid Mech 4 (2002), 76–94.

    Article  MathSciNet  MATH  Google Scholar 

  48. Gresho, P.M., Some Current CFD Issues Relevant to the Incompressible Navier-Stokes Equations, Comput. Methods Appl. Mech. Eng. 87 (1991), 201–252.

    Article  MathSciNet  MATH  Google Scholar 

  49. Grossman, P.D., and Soane, D.S., Orientation Effects on the Electrophoretic Mobility of Rod-Shaped Molecules in Free Solution, Anal. Chem. 62, (1990), 1592–1596.

    Article  Google Scholar 

  50. Guillopé, G., Hakim, A., and Talhouk, R., Existence of Steady Flows of Slightly Compressible Viscoelastic Fluids of White-Metzner Type Around an Obstacle, Comm. Pure Appl. Anal. 4 (2005), 23–43.

    Google Scholar 

  51. Guillopé C. and J.-C. Saut, Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law, Nonlinear Anal. Th. Methods Appl. 15 (1990), 849–869.

    Article  MATH  Google Scholar 

  52. Guillopé, C. and J.-C. Saut, Existence and Stability of Steady Flows of Weakly Viscoelastic Fluids, Proc. Roy. Soc. Edinburgh A119 (1991), 137–158.

    Google Scholar 

  53. Guillopé, G. and Talhouk, R., Steady Flows of Slightly Compressible Viscoelastic Fluids of Jeffreys’ Type Around an Obstacle, Diff. Int. Eq. 16 (2003), 1293–1320.

    MATH  Google Scholar 

  54. Hagen, G. On the Motion of Water in Narrow Cylindrical Tubes, Pogg. Ann., 46 (1839), 423–442.

    Article  Google Scholar 

  55. Hames, B.D., and Rickwood, D., Eds., Gel Electrophoresis of Proteins, IRL Press, Washington, D.C. (1984).

    Google Scholar 

  56. Hakim, A., Mathematical Analysis of Viscoelastic Fluids of White-Metzner Type, J. Math. Anal. Appl. 185 (1994), 675–705.

    Article  MathSciNet  MATH  Google Scholar 

  57. Heywood, J.G., The Navier-Stokes Equations: On the Existence, Regularity and Decay of Solutions, Indiana U. Math. J., 29 (1980), 639–681.

    Article  MathSciNet  MATH  Google Scholar 

  58. Heywood, J.G., Rannacher, R., and Turek, S., Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations, Int. J. Numer. Meth. in Fluids 22 (1996), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  59. Horgan, C.O., and Wheeler, L.T., Spatial Decay Estimates for the Navier-Stokes Equations with Application to the Problem of Entry Flow, SIAM J. Appl. Math. 35 (1978), 97–116.

    Article  MathSciNet  MATH  Google Scholar 

  60. Joseph, D.D., Instability of the Rest State of Fluids of Arbitrary Grade Larger than One, Arch. Rational Mech. Anal. 75 (1980), 251–256.

    MathSciNet  Google Scholar 

  61. Joseph, D.D., Fluid Dynamics of Viscoelastic Liquids, Applied Mathematical Sciences, 84, Springer-Verlag (1990).

    Google Scholar 

  62. Joseph, D.D., 2000, Interrogations of Direct Numerical Simulation of Solid-Liquid Flow, Web Site: http://www.aem.umn.edu/people/faculty/joseph/interrogation.html

  63. Joseph, D.D., and Feng, J., A Note on the Forces that Move Particles in a Second-Order Fluid, J. Non-Newtonian Fluid Mech. 64 (1996), 299–302.

    Article  Google Scholar 

  64. Joseph, D.D., and Fosdick, R.L., The Free Surface on a Liquid Between Cylinders Rotating at Different Speeds. Part I, Arch. Rational Mech. Anal. 49 (1973), 321–380.

    MathSciNet  MATH  Google Scholar 

  65. Joseph, D.D., Beavers, G.S., and and Fosdick, R.L., The Free Surface on a Liquid Between Cylinders Rotating at Different Speeds. Part II, Arch. Rational Mech. Anal. 49 (1973), 381–401.

    MathSciNet  MATH  Google Scholar 

  66. Kučera, P. and Skalák, Z., Local Solutions to the Navier-Stokes Equations with Mixed Boundary Conditions, Acta Appl. Math. 54 (1998), 275–288.

    Article  MathSciNet  Google Scholar 

  67. Ladyzhenskaya, O.A., On Some New Equations Describing Dynamics of Incompressible Fluids and on Global Solvability of Boundary Value Problems to These Equations, Trudy Steklov Math. Inst. 102 (1967), 85–104.

    MATH  Google Scholar 

  68. Ladyzhenskaya, O.A., On Some Modifications of the Navier-Stokes Equations for Large Gradients of Velocity, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 7 (1968), 126–154.

    MathSciNet  MATH  Google Scholar 

  69. Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).

    MATH  Google Scholar 

  70. Ladyzhenskaya, O.A., Boundary Value Problems of Mathematical Physics, Springer-Verlag (1985).

    Google Scholar 

  71. Ladyzhenskaya, O.A., and Solonnikov, V.A., Determination of Solutions of Boundary Value Problems for Steady-State Stokes and Navier-Stokes Equations in Domains Having an Unbounded Dirichlet Integral, Zap. Nauchn. Sem. Leningrad Ot-del. Mat. Inst. Steklov (LOMI) 96 (1980), 117–160; English Transl.: J.Soviet Math., 2 no. 1 (1983), 728-761.

    MathSciNet  MATH  Google Scholar 

  72. Ladyzhenskaya, O.A. and Ural’ceva, N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, (1968).

    MATH  Google Scholar 

  73. Lee, S.C., Yang, D.Y., Ko, J., and You, J.R., Effect of compressibility on flow field and fiber orientation during the filling stage of injection molding J Mater. Process. Tech. 70 (1997), 83–92.

    Article  Google Scholar 

  74. Leigh, D.C., Non-Newtonian Fluids and the Second Law of Thermodynamics, Phys. Fluids 5 (1962), 501–502.

    Article  MATH  Google Scholar 

  75. Lieberman, G.M., Boundary Regularity for Solutions of Degenerate Elliptic Equations, Nonlinear Anal. Th. Methods Appl. 12 (1988), 1203–1219.

    Article  MathSciNet  MATH  Google Scholar 

  76. Lions, J.-L., Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  77. Liu, W.B. and Barrett, W., A Remark on the Regularity of the Solutions of the p-Laplacian and its Application to their Finite Element Approximation, J. Math. Anal. Appl. 178 (1993), 470–487.

    Article  MathSciNet  MATH  Google Scholar 

  78. Liu, Y.J., and Joseph, D.D., Sedimentation of Particles in Polymer Solutions, J. Fluid Mech. 255 (1993), 565–595.

    Article  Google Scholar 

  79. Malek, J., Nečas, J., Rokyta, M., and Růžička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Vol. 13 Chapman & Hall, London (1996).

    MATH  Google Scholar 

  80. Marušić-Paloka, E., Steady Flow of a Non-Newtonian Fluid in Unbounded Channels and Pipes, Math. Mod. Meth. Appl. Sci. 10 (2000), 1425–1445.

    Article  Google Scholar 

  81. Miller, R.K., Feldstein, A., Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal. 2 (1971), 242–258.

    Article  MathSciNet  MATH  Google Scholar 

  82. Minty, G.J., On a ‘Monotonicity’ Method for the Solution of Nonlinear Equations in Banach Spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041.

    Article  MathSciNet  MATH  Google Scholar 

  83. Noll, W., A Mathematical Theory of the Mechanical Behavior of Continuous Media, Arch. Rational Mech. Anal. 2 (1958), 197–226.

    Article  MATH  Google Scholar 

  84. Novotný, A. Sequeira, A. Videman, J.H., Steady Motions of Viscoelastic Fluids in Three-Dimensional Exterior Domains. Existence, Uniqueness and Asymptotic Behaviour, Arch. Ration. Mech. Anal. 149 (1999), 49–67.

    Article  MathSciNet  MATH  Google Scholar 

  85. Ostwald, K., Uber die Geschwindigkeitsfunktion der Viskosität disperser Systeme I, Kolloid Zeit. 36 (1925), 99–117.

    Article  Google Scholar 

  86. Pileckas, K., Navier-Stokes System in Domains with Cylindrical Outlets to Infnity. Leray’s Problem, Handbook of Mathematical Fluid Mechanics, North-Holland Elsevier Science, in press.

    Google Scholar 

  87. Pileckas, K., Sequeira, A., and Videman, J.H., Steady Flows of Viscoelastic Fluids in Domains with Outlets to Infinity J. Math. Fluid Mech. 2 (2000), 185–218.

    Article  MathSciNet  MATH  Google Scholar 

  88. Poiseuille, J.L.M., Recherches Experimentales sur le Mouvement des Liquides dans les Tubes de Tres Petits Diameters, C. R. Acad. Sci. Paris 11 (1840), 961–967.

    Google Scholar 

  89. Prilepko, A.I., Orlovsky, D.G., Vasin, I.A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, Basel (1999).

    Google Scholar 

  90. Prouse, G., Soluzioni Periodiche delle Equazioni di Navier-Stokes, Rend. Atti. Accad. Naz. Lincei 35 (1963), 403–409.

    MathSciNet  Google Scholar 

  91. Rannacher, R., Methods for Numerical Flow Simulation, article in this volume.

    Google Scholar 

  92. Renardy, M., Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations Z. Angew. Math. Mech. 65 (1985), 449–451.

    Article  MathSciNet  MATH  Google Scholar 

  93. Roco, M.C., (Ed.), Particulate Two-Phase Flow, Butterworth-Heinemann Publ., Series in Chemical Engineering (1993).

    Google Scholar 

  94. Robertson, A.M., Review of Relevant Continuum Mechanics, article in this volume.

    Google Scholar 

  95. Růžička, M., A Note on Steady Flow of Fluids with Shear Dependent Viscosity, Nonlinear Anal. Th. Methods Appl. 30 (1997), 3029–3039.

    Article  MATH  Google Scholar 

  96. Sandri, D., Sur L’Approximation Numérique des Écoulements Quasi-Newtoniens dont la Viscosité suit la loi Puissance ou la loi de Carreau, Math. Mod. Numer. Anal. 27 (1993), 131–155.

    MathSciNet  MATH  Google Scholar 

  97. Schmid-Schonbein, H., and Wells, R., Fluid Drop-Like Transition of Erythrocytes under shear, Science 165 (1969), 288–291.

    Article  Google Scholar 

  98. Segrè, G., and Silberberg, A., Radial Poiseuille Flow of Suspensions, Nature 189 (1961), 209–210.

    Google Scholar 

  99. Segrè G., and Silberberg, A., Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow, Part I, J. Fluid Mech. 14 (1962), 115–135.

    Article  Google Scholar 

  100. Sequeira, A., and Baía, M., A Finite Element Approximation for the Steady Solution of a Second-Grade Fluid Model, J. Comput. Appl. Math. 111 (1999), 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  101. Sequeira, A., and Videman, J.-H. Mathematical Results and Numerical Methods for Steady Incompressible Viscoelastic Fluid Flows, Math. Appl. 528 (2001), 339–365.

    MathSciNet  Google Scholar 

  102. Serrin, J.B, Poiseuille and Couette Flow of Non-Newtonian Fluids, Z. Angew. Math. Mech. 39 (1959), 295–299.

    Article  MathSciNet  MATH  Google Scholar 

  103. Simader, C.G., and Sohr, H., 1997, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Vol. 360.

    Google Scholar 

  104. Talhouk, R., Existence Results for Steady Flow of Weakly Compressible Viscoelastic Fluids with Differential Constitutive Law, Diff. and Integral Eq. 12 (1999), 741–742.

    MathSciNet  MATH  Google Scholar 

  105. Tinland, B., Meistermann, L., Weill, G., Simultaneous Measurements of Mobility, Dispersion, and Orientation of DNA During Steady-Field Gel Electrophoresis Cou-pling a Fluorescence Recovery After Photobleaching Apparatus with a Fluorescence Detected Linear Dichroism Setup, Phys. Rev. E 61 (2000), 6993–6998.

    Article  Google Scholar 

  106. Thomson, W., and Tait, P.G., Natural Philosophy, Vols 1, 2, Cambridge University Press (1879).

    Google Scholar 

  107. Trainor, G.L., DNA Sequencing, Automation and Human Genome, Anal. Chem. 62 (1990), 418–426.

    Article  Google Scholar 

  108. Tricomi, F.G., Integral Equations, Intersience, New York (1957).

    Google Scholar 

  109. Truesdell, C.A., The Meaning of Viscometry in Fluid Dynamics, Ann. Rev. Fluid Mech. 6 (1974), 111–146.

    Article  Google Scholar 

  110. Uijttewaal, W.S.J., Nijhof, E.-J., and Heethaar R.M., Lateral Migration of Blood Cells and Microspheres in Two-Dimensional Poiseuille Flow: a Laser-Doppler Study, J. Biomech. 27 (1994), 35–42.

    Article  Google Scholar 

  111. Vaidya, A., A Note on the Orientation of Symmetric Rigid Bodies Sedimenting in a Power-Law Fluid, Appl. Math. Letters 18 (2005), 1332–1338.

    Article  MathSciNet  MATH  Google Scholar 

  112. Vaidya, A., Observations on the Transient Nature of Shape-Tilting Bodies Sedimenting in Polymeric Liquids, J. Fluids and Struct. 22 (2006), 253–259.

    Article  Google Scholar 

  113. Vejvoda, O., Herrmann, L., Lovicar, V., Sova, M.; Straškraba, I., and Štědrý, M., Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, The Hague (1981).

    Google Scholar 

  114. Wang, J., Bail, R.-Y., Lewandowski, C., Galdi, G.P. and Joseph, D.D., Sedimntation of Cylindrical Particles in a Viscoelastic Liquid: Shape-Tilting, China Particuology 2 (2004), 13–18.

    Article  Google Scholar 

  115. Wolf, J., Existence of Weak Solutions to the Equations of Non-Stationary Motion of Non-Newtonian Fluids with Shear-Rate Dependent Viscosity, J. Math. Fluid Mech., in press.

    Google Scholar 

  116. Womersley, J.R., Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries when the Pressure Gradient is Known, J. Physiol. 127 (1955), 553–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Galdi, G.P. (2008). Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics. In: Hemodynamical Flows. Oberwolfach Seminars, vol 37. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7806-6_3

Download citation

Publish with us

Policies and ethics