Skip to main content

Review of Relevant Continuum Mechanics

  • Chapter
Hemodynamical Flows

Part of the book series: Oberwolfach Seminars ((OWS,volume 37))

Abstract

In this chapter we review the basic continuum mechanics at the foundation of the technical material in this book. Readers interested in further information are referred to monographs on this subject including [65], [10], [27], [21], [22], [32], [61], and [59].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Alexy, R.B. Wenby, E. Pais, L.J. Goldstein, W. Hogenauer, and H.J. Meiselman. An automated tube-type blood viscometer: Validation studies. Biorheology, 42:237–247, 2005.

    Google Scholar 

  2. G. Astarita and G. Marrucci. Principles of Non-Newtonian Fluid Mechanics. McGraw Hill, 1974.

    Google Scholar 

  3. H.A. Barnes. Thixotropy — a review. J. Non-Newtonian Fluid Mech., 70:1–33, 1997.

    Article  MathSciNet  Google Scholar 

  4. H.A. Barnes, J.F. Hutton, and K. Walters. An Introduction to Rheology. Elsevier, 1989.

    Google Scholar 

  5. H.A. Barnes. The yield stress — a review or ‘*’ — everything flows? J. Non-Newtonian Fluid Mech., 81:133–178, 1999.

    Article  MATH  Google Scholar 

  6. W.H. Bauer and E.A. Collins. Thixotropy and dilatancy. In F.R. Eirich, editor, Rheology: Theory and Applications, volume 4. Academic Press, 1967.

    Google Scholar 

  7. R.B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, Volume I: Fluid Mechanics. John Wiley & Sons, second edition, 1987.

    Google Scholar 

  8. R.B. Bird, G.C. Dai, and B.J. Yarusso. The rheology and flow of viscoplastic materials. Reviews in Chemical Engineering, 1:1–70, 1983.

    Google Scholar 

  9. N. Casson. A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of Disperse Systems, pages 84–102. Pergamon, 1959.

    Google Scholar 

  10. P. Chadwick. Continuum Mechanics. John Wiley & Sons, 1976.

    Google Scholar 

  11. B.D. Coleman. Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids. Arch. Rational Mech. Anal., 9:273–300, 1962.

    MATH  MathSciNet  Google Scholar 

  12. B.D. Coleman, H. Markovitz, and W. Noll. Viscometric Flows of Non-Newtonian Fluids. Springer-Verlag, 1966.

    Google Scholar 

  13. B.D. Coleman and W. Noll. An approximation theorem for functionals, with approximations in continuum mechanics. Arch. Rational Mech. Anal., 6:355–370, 1960.

    MATH  MathSciNet  Google Scholar 

  14. B.D. Coleman and W. Noll. Foundations of linear viscoelasticity. Rev. Mod. Phys., 33(2):239–249, Apr 1961.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.E. Dunn and R.L. Fosdick. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal., 56:191–252, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Duvant and J.L. Lions. Inequalities in Mechanics and Physics. Springer-Verlag, 1982.

    Google Scholar 

  17. R. Finn. Stationary solutions of the Navier-Stokes equations. Symp. Appl. Math., 17:121–153, 1965.

    Google Scholar 

  18. Y.C. Fung. Elasticity of soft tissue in simple elongation. Am. J. Physiology, 213:1532–1544, 1967.

    Google Scholar 

  19. Y.C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, 1993.

    Google Scholar 

  20. G.P. Galdi. Mathematical problems in classical and non-Newtonian fluid mechanics. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-Seminars, Vol. 37, p. 121–273. Birkhäuser Verlag, 2008.

    MathSciNet  Google Scholar 

  21. G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I: Linearized steady problems. In Springer Tracts in Natural Philosophy. Springer-Verlag, (revised edition), 1998.

    Google Scholar 

  22. G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations, Vol. II: Non-linear steady problems. In Springer Tracts in Natural Philosophy. Springer-Verlag (revised edition), 1998.

    Google Scholar 

  23. G.P. Galdi, J.G. Heywood, and Y. Shibata. On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest. Arch. Rational Mech. Anal., 138:307–318, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. G.P. Galdi, M. Padula, and K.R. Rajagopal. On the conditional stability of the rest state of a fluid of second grade in unbounded domains. Arch. Rational Mech. Anal., 109(2):173–182, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  25. G.P. Galdi and B.D. Reddy. Well-posedness of the problem of fiber suspension flows. J. Non-Newtonian Fluid Mech., 83(3):205–230, 1999.

    Article  MATH  Google Scholar 

  26. A.E. Green and P.M. Naghdi. A note on invariance under superposed rigid body motions. J. Elasticity, 9:1–8, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  27. M.E. Gurtin. Introduction to Continuum Mechanics. Academic Press, 1981.

    Google Scholar 

  28. J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, 1923.

    Google Scholar 

  29. W.H. Herschel and R. Bulkley. Konsistenzmessungen von Gummi-Benzol-Lösungen. Kolloid Z., 39:291–300, 1926.

    Article  Google Scholar 

  30. W.H. Herschel and R. Bulkley. Measurement of consistency as applied to rubberbenzene solutions. Proc. ASTM, Part II, 26:621–629, 1926.

    Google Scholar 

  31. J.G. Heywood. On non-stationary problems for the Navier-Stokes equations and the stability of stationary flows. PhD thesis, Stanford University, 1969.

    Google Scholar 

  32. G.A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, 2000.

    Google Scholar 

  33. J.D. Humphrey. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer-Verlag, 2002.

    Google Scholar 

  34. J.D. Humphrey. Review paper: Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 459:3–46, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  35. M.W. Johnson Jr. and D. Segalman. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech., 2:255–269, 1977.

    Article  Google Scholar 

  36. D.D. Joseph. Instability of the rest state of fluids of arbitrary grade greater than one. Arch. Rational Mech. Anal., 75:251–256, 1981.

    Article  MATH  Google Scholar 

  37. D.D. Joseph. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, 1990.

    Google Scholar 

  38. M.M. Keentok, A.G. Georgescu, A.A. Sherwood, and R.I. Tanner. The measurement of the second normal stress difference for some polymer solutions. J. Non-Newtonian Fluid Mech., 6:303–324, 1980.

    Article  Google Scholar 

  39. D.C. Leigh. Non-Newtonian fluids and the second law of thermodynamics. Physics of Fluids, 5(4):501–502, 1962.

    Article  MATH  Google Scholar 

  40. C.W. Macosko. Rheology: Principles, Measurements and Applications. VCH Publishers, Inc., 1994.

    Google Scholar 

  41. G.N. Marinakis, J.C. Barbenel, A.C. Fisher, and S.G. Tsangaris. A new capillary viscometer for whole blood viscometry. Biorheology, 36:311–318, 1999.

    Google Scholar 

  42. P.C.F. Moller, J. Mewis, and D. Bonn. Yield stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter, 2:274–288, 2006.

    Article  Google Scholar 

  43. M. Mooney. Explicit formulas for slip and fluidity. J. Rheol., 2:210–221, 1931.

    Article  Google Scholar 

  44. P.M. Naghdi. Mechanics of solids. In C. Truesdell, editor, Handbuch der Physik, volume VIa/2, chapter The Theory of Shells and Plates, pages 425–640. Springer-Verlag, 1972.

    Google Scholar 

  45. W. Noll. A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal., 2(3):197–226, 1958.

    Article  MATH  Google Scholar 

  46. S. Oka. Cardiovascular Hemorheology. Cambridge University Press, 1981.

    Google Scholar 

  47. J.G. Oldroyd. A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb. Philos. Soc., 43:100–105, 1947.

    Article  MATH  MathSciNet  Google Scholar 

  48. J.G. Oldroyd. Two-dimensional plastic flow of a Bingham solid. Proc. Camb. Philos. Soc., 43:383–395, 1947.

    MATH  MathSciNet  Google Scholar 

  49. R.G. Owens and T.N. Phillips. Computational Rheology. Imperial College Press, 2005.

    Google Scholar 

  50. T.C. Papanastasiou. Flows of materials with yield. J. of Rheology, 31:384–404, 1987.

    Article  Google Scholar 

  51. W. Prager. Introduction to Mechanics of Continua. Dover Phoenix Edition, 1961.

    Google Scholar 

  52. B. Rabinowitsch. Über die viskosität und elastizität von solen. Z. Physik Chem., A145:1–26, 1929.

    Google Scholar 

  53. S. Ramachandran, H.W. Gao, and E.B. Christiansen. Dependence of viscoelastic flow functions on molecular structure for linear and branched polymers. Macromolecules, 18:695–699, 1985.

    Article  Google Scholar 

  54. M. Reiner. Elasticity and Plasticity. In S. Flügge, editor, Handbuch der Physik, Volume VI. Chapter: Rheology, p. 434–550. Springer-Verlag, 1958.

    Google Scholar 

  55. M. Reiner. The Deborah number. Physics Today, 17:62, 1964.

    Google Scholar 

  56. A.M. Robertson. On the attainability of steady viscometric flows. Quaderni di Matematica, 10:219–245, 2003.

    Google Scholar 

  57. A.M. Robertson, A. Sequeira, and M.V. Kameneva. Hemorheology. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-Seminars, Vol. 37, p. 63–120. Birkhäuser Verlag, 2008.

    MathSciNet  Google Scholar 

  58. W.R. Schowalter. Mechanics of Non-Newtonian Fluids. Pergamon Press, 1978.

    Google Scholar 

  59. A.J.M. Spencer. Continuum Mechanics. Dover Publications, Inc, 2004.

    Google Scholar 

  60. L.A. Taber. Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific Publishing Co., 2004.

    Google Scholar 

  61. R. Temam and A. Miranville. Mathematical Modeling in Continuum Mechanics. Cambridge University Press, 2001.

    Google Scholar 

  62. G.B. Thurston. Viscoelastic properties of blood and blood analogs. Advances in Hemodynamics and Hemorheology, 1:1–30, 1996.

    Google Scholar 

  63. C. Truesdell. A new definition of a fluid, II. The Maxwellian fluid. J. Math Pures Appl., 30:111–155, 1951.

    MATH  MathSciNet  Google Scholar 

  64. C. Truesdell. The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal., 1:125–300, 1952.

    MathSciNet  Google Scholar 

  65. C. Truesdell and W. Noll. Non-linear field theories of mechanics. In S. Flugge, editor, Handbuch der Physik, volume III/3. Springer-Verlag, 1965.

    Google Scholar 

  66. S. Turek and J. Hron. Numerical techniques for multiphase flow with liquid-solid interaction. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-Seminars, Vol. 37, p. 379–501. Birkhäuser Verlag, 2008.

    MathSciNet  Google Scholar 

  67. R. Wulandana and A.M. Robertson. An Inelastic Multi-Mechanism Constitutive Equation for Cerebral Arterial Tissue. Biomechanics and Modeling in Mechanobiology, 4(4):235–248, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Robertson, A.M. (2008). Review of Relevant Continuum Mechanics. In: Hemodynamical Flows. Oberwolfach Seminars, vol 37. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7806-6_1

Download citation

Publish with us

Policies and ethics