Skip to main content

Cholinergic, histaminergic, and noradrenergic regulation of LTP stability and induction threshold: cognitive implications

  • Chapter
  • 1118 Accesses

Part of the book series: Experientia Supplementum ((EXS,volume 98))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James W (1890) Principles of psychology. H. Holt & Co., New York

    Google Scholar 

  2. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Memory 82: 171–177

    Article  Google Scholar 

  3. McGaugh JL (2000) Memory — a century of consolidation. Science 287: 248–251

    Article  PubMed  CAS  Google Scholar 

  4. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21

    Article  PubMed  CAS  Google Scholar 

  5. Martin SJ, Morris RGM (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12: 609–636

    Article  PubMed  CAS  Google Scholar 

  6. Roman FS, Truchet B, Marchetti E, Chaillan FA, Soumireu-Mourat B (1999) Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Progr Neurobiol 58: 61–87

    Article  PubMed  CAS  Google Scholar 

  7. Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9: 463–474

    Article  PubMed  CAS  Google Scholar 

  8. Dineley KT, Weeber EJ, Atkins C, Adams JP, Anderson AE, Sweatt JD (2001) Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. J Neurochem 77: 961–971

    Article  PubMed  CAS  Google Scholar 

  9. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298: 776–780

    Article  PubMed  CAS  Google Scholar 

  10. Heynen AJ, Abraham WC, Bear MF (1996) Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381: 163–166

    Article  PubMed  CAS  Google Scholar 

  11. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99: 10831–10836

    Article  PubMed  CAS  Google Scholar 

  12. Ovsepian SV, Anwyl R, Rowan MJ (2004) Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci 20: 1267–1275

    Article  PubMed  Google Scholar 

  13. Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate gyrus of the unanesthetized rabbit following stimulation of the perforant path. J Physiol 232: 357–374

    PubMed  CAS  Google Scholar 

  14. Frey S, Bergado-Rosado J, Seidenbecher T, Pape H-C, Frey JU (2001) Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J Neurosci 21: 3697–3703

    PubMed  CAS  Google Scholar 

  15. Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22: 9626–9634

    PubMed  CAS  Google Scholar 

  16. Racine RJ, Chapman CA, Trepel C, Teskey GC, Milgram NW (1995) Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Res 702: 87–93

    Article  PubMed  CAS  Google Scholar 

  17. Racine RJ, Teskey GC, Wilson D, Seidlitz E, Milgram NW (1994) Post-activation potentiation and depression in the neocortex of the rat: II. Chronic preparations. Brain Res 637: 83–96

    Article  PubMed  CAS  Google Scholar 

  18. Heynen AJ, Bear MF (2001) Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci 21: 9801–9813

    PubMed  CAS  Google Scholar 

  19. Hughes SW, Lörincz M, Cope DW, Blethyn KL, Kekesi KA, Parri HR, Juhasz G, Crunelli V (2004) Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron 42: 253–268

    Article  PubMed  CAS  Google Scholar 

  20. Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cog Sci 3: 351–359

    Article  Google Scholar 

  21. Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115: 205–218

    Article  PubMed  CAS  Google Scholar 

  22. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23: 28–46

    Article  PubMed  CAS  Google Scholar 

  23. Edeline J-M (1999) Learning-induced physiological plasticity in the thalamocortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progr Neurobiol 57: 165–224

    Article  PubMed  CAS  Google Scholar 

  24. Edeline J-M (2003) The thalamocortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153: 554–572

    Article  PubMed  Google Scholar 

  25. Gu Q (2003) Contributions of acetylcholine to visual cortex plasticity. Neurobiol Learn Mem 80: 291–301

    Article  PubMed  CAS  Google Scholar 

  26. Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5: 279–290

    Article  PubMed  CAS  Google Scholar 

  27. Krnjevic K, Ropert N (1982) Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by the stimulation of the medial septum. Neuroscience 7: 2165–2183

    Article  PubMed  CAS  Google Scholar 

  28. Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115: 117–141

    Article  PubMed  CAS  Google Scholar 

  29. Markram H, Segal M (1990) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol (Lond) 427: 381–393

    CAS  Google Scholar 

  30. Brocher S, Artola A, Singer W(1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573: 27–36

    Article  PubMed  CAS  Google Scholar 

  31. Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116: 34–39

    Article  PubMed  CAS  Google Scholar 

  32. Auerbach JM, Segal M (1994) A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol 72: 2034–2040

    PubMed  CAS  Google Scholar 

  33. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364: 723–725

    Article  PubMed  CAS  Google Scholar 

  34. Markevich V, Scorsa AM, Dawe GS, Stephenson JD (1997) Cholinergic facilitation and inhibition of long-term potentiation of CA1 in the urethane-anaesthetized rats. Brain Res 754: 95–102

    Article  PubMed  CAS  Google Scholar 

  35. Leung LS, Shen B, Rajakumar N, Ma J (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23: 9297–9304

    PubMed  CAS  Google Scholar 

  36. Dudar JD, Whishaw IQ, Szerb JC (1979) Release of acetylcholine from the hippocampus of freely moving rats during sensory stimulation and running. Neuropharmacology 18: 673–678

    Article  PubMed  CAS  Google Scholar 

  37. Boyd TE, Trepel C, Racine RJ (2000) Cholinergic modulation of neocortical long-term potentiation in the awake, freely moving rat. Brain Res 881: 28–36

    Article  PubMed  CAS  Google Scholar 

  38. Verdier D, Dykes RW (2001) Long-term cholinergic enhancement of evoked potentials in rat hindlimb somatosensory cortex displays characteristics of long-term potentiation. Exp Brain Res 137: 71–82

    Article  PubMed  CAS  Google Scholar 

  39. Dringenberg HC, Kuo M-C, Tomaszek S (2004) Stabilization of thalamocortical long-term potentiation by the amygdala: cholinergic and transcription-dependent mechanisms. Eur J Neurosci 20: 557–565

    Article  PubMed  Google Scholar 

  40. Zhang ZW, Vijayaraghaven S, Berg DK (1994) Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12: 167–177

    Article  PubMed  CAS  Google Scholar 

  41. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A (2001) Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21: 7993–8003

    PubMed  CAS  Google Scholar 

  42. Hunt S, Schmidt J (1979) The relationship of alpha-bungarotoxin binding activity and cholinergic termination within the rat hippocampus. Neuroscience 4: 585–592

    Article  PubMed  CAS  Google Scholar 

  43. Hunt SP, Schmidt J (1978) The electron microscopic autoradiographic localization of alpha-bungarotoxin binding sites within the central nervous system of the rat. Brain Res 142: 152–159

    Article  PubMed  CAS  Google Scholar 

  44. Levy RB, Aoki C (2002) Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and-negative excitatory synapses in rat sensory cortex. J Neurosci 22: 5001–5015

    PubMed  CAS  Google Scholar 

  45. Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22: 555–561

    Article  PubMed  CAS  Google Scholar 

  46. Barros DM, Ramirez MR, Dos Reis EA, Izquierdo I (2004) Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 126: 651–656

    Article  Google Scholar 

  47. Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal α 7 and α4β2 nicotinic receptors and working memory. Neuroscience 109: 757–765

    Article  PubMed  CAS  Google Scholar 

  48. Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168: 130–134

    Article  PubMed  CAS  Google Scholar 

  49. Sawada S, Yamamoto C, Ohno-Shosaku T (1994) Long-term potentiation and depression in the dentate gyrus and effects of nicotine. Neurosci Res 20: 323–329

    Article  PubMed  CAS  Google Scholar 

  50. Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitates the induction of LTP. Brain Res 846: 137–143

    Article  PubMed  CAS  Google Scholar 

  51. Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31: 131–141

    Article  PubMed  CAS  Google Scholar 

  52. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T (2000) Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci 12: 3741–3747

    Article  PubMed  CAS  Google Scholar 

  53. Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124: 183–194

    Article  PubMed  CAS  Google Scholar 

  54. Blandina P, Efoudebe M, Cenni G, Mannaioni P, Passani MB (2004) Acetylcholine, histamine, and cognition: two sides of the same coin. Learn Mem 11: 1–8

    Article  PubMed  Google Scholar 

  55. Haas H, Panula P (2003) The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci 4: 121–130

    Article  PubMed  CAS  Google Scholar 

  56. Bekkers JM (1993) Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science 261: 104–106

    Article  PubMed  CAS  Google Scholar 

  57. Vorobjev VS, Sharonova IN, Walsh IB, Haas HL (1993) Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Neuron 11: 837–844

    Article  PubMed  CAS  Google Scholar 

  58. Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34: 181–190

    Article  PubMed  CAS  Google Scholar 

  59. Bacciottini L, Passani MB, Giovannelli L, Cangiolo I, Mannaioni PF, Schunack W, Blandina P (2002) Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 15: 1669–1680

    Article  PubMed  Google Scholar 

  60. Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2001) Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 13: 68–78

    Article  PubMed  CAS  Google Scholar 

  61. Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, Leurs R, Pepeu G, Giovannini MG (1996) Inhibition of cortical acetylcholine release and cognitive performance by histamine H3receptor activation in rats. Br J Pharmacol 119: 1656–1664

    PubMed  CAS  Google Scholar 

  62. Lacaille JC, Harley CW (1985) The action of norepinephrine in the dentate gyrus: beta-mediated facilitation of evoked potentials in vitro. Brain Res 358: 210–220

    Article  PubMed  CAS  Google Scholar 

  63. Harley CW, Milway JS (1986) Glutamate ejection in the locus coeruleus enhances the perforant path-evoked population spike in the dentate gyrus. Exp Brain Res 63: 143–150

    Article  PubMed  CAS  Google Scholar 

  64. Harley C, Milway JS, Lacaille J-C (1989) Locus coeruleus potentiation of dentate gyrus responses: evidence for two systems. Brain Res Bull 22: 643–650

    Article  PubMed  CAS  Google Scholar 

  65. Harley CW, Sara SJ (1992) Locus coeruleus bursts induced by glutamate trigger delayed perforant path spike amplitude potentiation in the dentate gyrus. Exp Brain Res 89: 581–587

    Article  PubMed  CAS  Google Scholar 

  66. Klukowski G, Harley CW (1994) Locus coeruleus activation induces perforant path-evoked population spike potentiation in the dentate gyrus of awake rat. Exp Brain Res 102: 165–170

    Article  PubMed  CAS  Google Scholar 

  67. Walling SG, Harley CW(2004) Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel β-adrenergic-and protein synthesis-dependent mammalian plasticity mechanism. J Neurosci 24: 598–604

    Article  PubMed  CAS  Google Scholar 

  68. Emptage NJ, Carew TJ (1993) Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science 262: 253–256

    Article  PubMed  CAS  Google Scholar 

  69. Frey S, Bergado JA, Frey JU(2003) Modulation of late phases of long-term potentiation in the rat dentate gyrus by stimulation of the medial septum. Neuroscience 118: 1055–1062

    Article  PubMed  CAS  Google Scholar 

  70. Straube T, Frey JU (2003) Involvement of beta-adrenergic receptors in protein synthesis-dependent late long-term potentiation (LTP) in the dentate gyrus of freely moving rats: the critical role of the LTP induction strength. Neuroscience 119: 473–479

    Article  PubMed  CAS  Google Scholar 

  71. Straube T, Korz V, Balschun D, Frey JU (2003) Requirement of β-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J Physiol (Lond) 552.3: 953–960

    Article  Google Scholar 

  72. Bliss TVP (1998) The saturation debate. Science 281: 1975–1976

    Article  PubMed  CAS  Google Scholar 

  73. Cain DP (1997) LTP, NMDA, genes and learning. Curr Opin Neurobiol 7: 235–242

    Article  PubMed  CAS  Google Scholar 

  74. Stevens CF (1998) A million dollar question: does LTP = memory? Neuron 20: 1–2

    Article  PubMed  CAS  Google Scholar 

  75. Bartus RT, Flicker C, Dean R, Pontecorvo M, Figueriedo J, Fisher S (1985) Selective memory loss following nucleus basalis lesions: long-term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23: 125–135

    Article  PubMed  CAS  Google Scholar 

  76. Bartus RT (1979) Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol Biochem Behav 9: 833–836

    Article  Google Scholar 

  77. Bartus RT, Johnson HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5: 39–46

    Article  PubMed  CAS  Google Scholar 

  78. Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Ann Natl Acad Sci USA 102: 2158–2161

    Article  CAS  Google Scholar 

  79. Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Memory 80: 178–193

    Article  CAS  Google Scholar 

  80. Barros DM, Pereira P, Medina JH, Izquierdo I (2002) Modulation of working memory and of long-but not short-term memory by cholinergic mechanisms in the basolateral amygdala. Behav Pharmacol 13: 163–167

    PubMed  CAS  Google Scholar 

  81. Power AE, McGaugh JL (2002) Phthalic acid amygdalopetal lesions of the nucleus basalis magnocellularis induces reversible memory deficits in rats. Neurobiol Learn Memory 77: 372–388

    Article  Google Scholar 

  82. Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23: 227–228

    Article  PubMed  CAS  Google Scholar 

  83. Dringenberg HC, Vanderwolf CH (1996) Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res 108: 285–296

    Article  PubMed  CAS  Google Scholar 

  84. Dringenberg HC, Vanderwolf CH (1997) Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp Brain Res 116: 160–174

    Article  PubMed  CAS  Google Scholar 

  85. Power AE, Thal LJ, McGaugh JL (2002) Lesions of the nucleus basalis magnocellularis induced by 192 IgG-saporin block memory enhancement with posttraining norepinephrine in the basolateral amygdala. Proc Natl Acad Sci USA 99: 2315–2319

    Article  PubMed  CAS  Google Scholar 

  86. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163: 495–529

    Article  PubMed  CAS  Google Scholar 

  87. Izquierdo I, Medina JH, Izquierdo LA, Barros DM, de Souza MM, Souza T (1998) Short-and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol Learn Mem 69: 219–224

    Article  PubMed  CAS  Google Scholar 

  88. Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T et al. (2000): Modest neuropsychological deficits caused by a reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci 20: 2418–2426

    PubMed  CAS  Google Scholar 

  89. Quevedo J, Sant’Anna MK, Madruga M, Lovato I, de-Paris F, Kapczinski F, Izquierdo I, Cahill L (2003) Differential effects of emotional arousal in short-and long-term memory of healthy adults. Neurobiol Learn Mem 79: 132–135

    Article  PubMed  Google Scholar 

  90. Cahill L, Prins B, Weber M, McGaugh JL (1994) β-adrenergic activation and memory for emotional events. Nature 371: 702–704

    Article  PubMed  CAS  Google Scholar 

  91. Izquierdo LA, Barros DM, Vianna MRM, Coitinho A, Silva TD, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short-and long-term memory. Cell Mol Neurobiol 22: 269–287

    Article  PubMed  CAS  Google Scholar 

  92. Izquierdo I, Medina JH, Vianna MRM, Izquierdo LA, Barros DM (1999) Separate mechanisms for short-and long-term memory. Behav Brain Res 103: 1–11

    Article  PubMed  CAS  Google Scholar 

  93. Fournier GN, Semba K, Rasmusson DD (2004) Modality-and region-specific acetylcholine release in the rat neocortex. Neuroscience 126: 257–262

    Article  PubMed  CAS  Google Scholar 

  94. Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6: 526–531

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Dringenberg, H.C., Kuo, MC. (2006). Cholinergic, histaminergic, and noradrenergic regulation of LTP stability and induction threshold: cognitive implications. In: Levin, E.D. (eds) Neurotransmitter Interactions and Cognitive Function. Experientia Supplementum, vol 98. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7772-4_9

Download citation

Publish with us

Policies and ethics