Skip to main content

Capillary Mediated Melting of Ellipsoidal Needle Crystals

  • Conference paper
  • First Online:

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 154))

Abstract

Measurements of video data on melting dendritic crystal fragments in reduced gravity show that a fragment’s ellipsoidal axial ratio, C/A, rises initially until it melts down to a pole-to-pole length of C ≈ 5 mm. At that point we observe a sudden fall in the C/A ratio with time, as the polar regions melt toward each other more rapidly than C/A times the melting speed, dA/dt, of the equatorial region. This accelerated melting allows the C/A ratio to fall from values around 10–20 (needle-like) towards values approaching unity (spheres) just before total extinction occurs. Analytical and numerical modeling will be presented that suggest that the cause of these sudden changes in kinetics and morphology during melting at small length scales is due to a crystallite’s extreme shape anisotropy. Shape anisotropy leads to steep gradients in the mean curvature of the solid-melt interface near the ellipsoid’s poles. These curvature gradients act through the Gibbs-Thomson effect to induce unusual thermo-capillary heat fluxes within the crystallite that account for the observed enhanced polar melting rates. Numerical evaluation of the thermo-capillary heat fluxes shows that they increase rapidly with the C/A ratio, and with decreasing length scale, as melting progresses toward total extinction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Glicksman, S.P. Marsh, “Handbook of Crystal Growth”, Ed. D.T.J. Hurle, Elsevier Science Publishers, Amsterdam, (1993) 1075.

    Google Scholar 

  2. M.E. Glicksman, “Crystal Growth of Electronic Materials”. Chapter 5, Ed. Kaldis E., Elsevier Science Publishers, Amsterdam, (1985) 57.

    Google Scholar 

  3. M.E. Glicksman and A. O. Lupulescu, J. Cryst. Growth, 264 (2004) 541.

    Article  Google Scholar 

  4. M.E. Glicksman, M.B. Koss, J.C. LaCombe, L.A. Tennenhouse, J. Cryst. Growth, 174 (1997) 82.

    Article  Google Scholar 

  5. M.B. Koss, L.A. Tennenhouse, J.C. LaCombe, M.E. Glicksman, E.A. Winsa, Metall. and Mat. Trans. A, 30A (1999) 3177.

    Article  Google Scholar 

  6. D.T.J. Hurle, G. Müller, and R. Nitsche, in “Fluid Sciences and Materials Science in Space”, H.U. Walter Ed., Ch. X, Springer-Verlag, Berlin, (1987) 313.

    Chapter  Google Scholar 

  7. M.E. Glicksman, A. Lupulescu, and M.B. Koss, J. Thermophys. and Heat Trans., 17,1 (2003) 69.

    Article  Google Scholar 

  8. A.D. Solomon, Solar Energy, 22 (1979) 251.

    Article  Google Scholar 

  9. A.D. Solomon, Lett. Heat and Mass Trans., 7 (1980) 379.

    Article  Google Scholar 

  10. A.D. Solomon, Lett. Heat and Mass Trans., 8 (1981) 237.

    Article  Google Scholar 

  11. J. Crank, “Free and Moving Boundary Problems”, Clarendon Press, Oxford, (1984).

    MATH  Google Scholar 

  12. V. Alexiades and A.D. Solomon, “Mathematical Modeling of Melting and Freezing Processes”, Hemisphere Publishing Co., Washington, (1993).

    Google Scholar 

  13. L.A. Herraiz and M.A. Herrero and J.J.L. Velazquez, Proc. Roy. Soc. Edinburgh A, 131 (2001) 371.

    Article  Google Scholar 

  14. S.R. Coriell, G.B. McFadden, and R.F. Sekerka. J. Cryst. Growth, 200 (1999) 276.

    Article  Google Scholar 

  15. S.R. Coriell, G.B. McFadden, R.F. Sekerka, and W.J. Boettinger, J. Crys. Growth, 191 (1998) 573.

    Article  Google Scholar 

  16. M. Rettenmayr, O. Warkentin, and H.E. Exner, Zeit. für Metall., 88 (1997) 617.

    Google Scholar 

  17. B. Dutta and M. Rettenmayr, Metall. and Mat. Trans. A, 31A (2000) 2713.

    Article  Google Scholar 

  18. M. Rettenmayr, O. Warkentin, M. Rappaz, and H.E. Exner, Acta Mat., 49 (2001) 2499.

    Article  Google Scholar 

  19. M. Hillert and M. Rettenmayr, Acta Mat., 51 (2003) 2803.

    Article  Google Scholar 

  20. R.F. Sekerka, C.L. Jeanfils, R.W Heckel, “Lectures on the Theory of Phase Transformations”, Ed. H.I. Aaronson, The Metallurgical Society, AIME, New York, (1982).

    Google Scholar 

  21. M.E Glicksman, “Diffusion in Solids: Field Theory, Solid-state Principles, and Applications”. John Wiley & Sons, New York, (2000).

    Google Scholar 

  22. F.S. Ham, Quart. J. Appl. Math., 17 (1959) 137.

    Article  Google Scholar 

  23. W.W. Mullins, R.F. Sekerka, J. Appl. Phys., 34 (1961) 323.

    Article  Google Scholar 

  24. J.S. Langer, H. Muller-Krumbhaar, Acta Met., 26 (1978) 1681.

    Article  Google Scholar 

  25. J.S. Langer, Princeton Series in Physics, “Critical Problems in Physics”, Ch. 2, Princeton University Press, (1996).

    Google Scholar 

  26. J. Lipton, M.E. Glicksman, W. Kurz, Metall. Trans. A, 18A (1987) 341.

    Article  Google Scholar 

  27. M.E. Glicksman, R.J. Schaefer, J.D. Ayers, Metall. Trans. A, 7A (1976) 1747.

    Article  Google Scholar 

  28. M.E. Glicksman, “Crystal Growth of Electronic Materials”, Ch. 5, Ed. E. Kaldis, Elsevier Science Publishers, (1985) 57.

    Google Scholar 

  29. S.C. Huang, M.E. Glicksman, Acta Met., 29 (1981) 701.

    Article  Google Scholar 

  30. R. Trivedi, J.T. Mason, Metall. Trans. A, 22A (1991), 235.

    Article  Google Scholar 

  31. G. Poots, Int. J. Heat Mass Transfer, 5 (1963) 339.

    Article  Google Scholar 

  32. G.P. Ivantsov, Dokl. Akad. Nauk. USSR, 58,4 (1947) 567.

    Google Scholar 

  33. A. Lupulescu, M.E. Glicksman, M.B. Koss, 42nd AIAA Aerospace Sciences Meeting, (2004) 626.

    Google Scholar 

  34. M.E Glicksman, M.B. Koss, L.T. Bushnell, J.C. Lacombe, E.A. Winsa, Mat. Sci. Forum, 215–216 (1996) 179.

    Article  Google Scholar 

  35. J.C. LaCombe, M.B. Koss, V.E. Fradkov, M.E. Glicksman, Phys. Rev. E, 52,3 (1995) 2778.

    Article  Google Scholar 

  36. J.C. LaCombe, M.B. Koss, D.C. Corrigan, A. Lupulescu, L.A. Tennenhouse, J. Cryst. Growth, 206 (1999) 331.

    Article  Google Scholar 

  37. A. Lupulescu, J.C. LaCombe, J.E. Frei, M.E. Glicksman, M.B. Koss, Microgravity Symposium: Proc. TMS Meeting, Nashville, CD-ROM, (2000).

    Google Scholar 

  38. A. Lupulescu, M.E. Glicksman, M.B. Koss, J. Cryst. Growth, 276 (2005) 549–565.

    Article  Google Scholar 

  39. S.H. Davis, “Theory of Solidification”, Cambridge University Press, Cambridge, (2001).

    Book  Google Scholar 

  40. N.B. Singh and M.E. Glicksman, J. Cryst. Growth, 98 (1989) 573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Glicksman, M.E., Lupulescu, A., Koss, M.B. (2006). Capillary Mediated Melting of Ellipsoidal Needle Crystals. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7719-9_22

Download citation

Publish with us

Policies and ethics