Skip to main content

Existence, Uniqueness and an Explicit Solution for a One-Phase Stefan Problem for a Non-classical Heat Equation

  • Conference paper
  • First Online:
Free Boundary Problems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 154))

Abstract

Existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material is obtained by using the Friedman-Rubinstein integral representation method through an equivalent system of two Volterra integral equations. Moreover, an explicit solution of a similarity type is presented for a non-classical heat source depending on time and heat flux on the fixed face x = 0.

It was supported by CONICET PIP No. 3579 and ANPCYT PICT No. 03-11165.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz, I.E. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington (1972).

    MATH  Google Scholar 

  2. V. Alexiades, A.D. Solomon, Mathematical modeling of melting and freezing processes, Hemisphere — Taylor & Francis, Washington (1983).

    Google Scholar 

  3. L.R. Berrone, D.A. Tarzia and L.T. Villa, Asymptotic behavior of a non-classical heat conduction problem for a semi-infinite material, Math. Meth. Appl. Sci., 23 (2000), 1161–1177.

    Article  Google Scholar 

  4. J.R. Cannon, The one-dimensional heat equation, Addison-Wesley, Menlo Park (1984).

    Book  Google Scholar 

  5. J.R. Cannon, H.M. Yin, A class of non-linear non-classical parabolic equations, J. Diff. Eq., 79 (1989), 266–288.

    Article  Google Scholar 

  6. J. Crank, Free and moving boundary problems, Clarendon Press Oxford (1984).

    Google Scholar 

  7. A. Friedman, Free boundary problems for parabolic equations I. Melting of solids, J. Math. Mech., 8 (1959), 499–517.

    MathSciNet  MATH  Google Scholar 

  8. G. Gripenberg, S.O. Londen and O. Staffans, Volterra integral and functional equations, Cambridge Univ. Press, Cambridge (1990).

    Book  Google Scholar 

  9. S.C. Gupta, The classical Stefan problem. Basic concepts, modelling and analysis, Elsevier, Amsterdam (2003).

    MATH  Google Scholar 

  10. N. Kenmochi, M. Primicerio, One-dimensional heat conduction with a class of automatic heat source controls, IMA J. Appl. Math. 40 (1988), 205–216.

    Article  MathSciNet  Google Scholar 

  11. G. Lamé, B.P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquide, Annales chimie Physique 47 (1831), 250–256.

    Google Scholar 

  12. V.J. Lunardini, Heat transfer with freezing and thawing, Elsevier, Amsterdam (1991).

    Google Scholar 

  13. W.R. Mann, F. Wolf, Heat transfer between solid and gases under nonlinear boundary conditions, Quart. Appl. Math., 9 (1951), 163–184.

    Article  MathSciNet  Google Scholar 

  14. R.K. Miller, Nonlinear Volterra integral equations, W. A. Benjamin, Menlo Park (1971).

    MATH  Google Scholar 

  15. W.E. Olmstead, R.A. Handelsman, Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev., 18 (1976), 275–291.

    Article  MathSciNet  Google Scholar 

  16. A. Petrova, D.A. Tarzia and C.V. Turner, The one-phase supercooled Stefan problem with temperature boundary condition, Adv. Math. Sci. and Appl., 4 (1994), 35–50.

    MathSciNet  MATH  Google Scholar 

  17. J.H. Roberts, W.R. Mann, A certain nonlinear integral equation of the Volterra type, Pacific J. Math., 1 (1951), 431–445.

    Article  MathSciNet  Google Scholar 

  18. L.I. Rubinstein, The Stefan problem, Trans. Math. Monographs # 27, Amer. Math. Soc., Providence (1971).

    Google Scholar 

  19. B. Sherman, A free boundary problem for the heat equation with prescribed flux at both fixed face and melting interface, Quart. Appl. Math., 25 (1967), 53–63.

    Article  MathSciNet  Google Scholar 

  20. D.A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A, Rosario, # 2 (2000), (with 5869 titles on the subject, 300 pages). See www.austral.edu.ar/MAT-SerieA/2(2000)/

    Google Scholar 

  21. D.A. Tarzia, A Stefan problem for a non-classical heat equation, MAT-Serie A, Rosario, # 3 (2001), 21–26.

    Google Scholar 

  22. D.A. Tarzia, L.T. Villa, Some nonlinear heat conduction problems for a semi-infinite strip with a non-uniform heat source, Rev. Un. Mat. Argentina, 41 (2000), 99–114.

    MathSciNet  MATH  Google Scholar 

  23. L.T. Villa, Problemas de control para una ecuación unidimensional del calor, Rev. Un. Mat. Argentina, 32 (1986), 163–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Briozzo, A.C., Tarzia, D.A. (2006). Existence, Uniqueness and an Explicit Solution for a One-Phase Stefan Problem for a Non-classical Heat Equation. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7719-9_12

Download citation

Publish with us

Policies and ethics