Skip to main content

Toward whole cell modeling and simulation: Comprehensive functional genomics through the constraint-based approach

  • Chapter
Systems Biological Approaches in Infectious Diseases

Part of the book series: Progress in Drug Research ((PDR,volume 64))

Abstract

The increasing availability of various system-level, or so-called ‘omics’, datasets, in concert with existing data from the primary research literature, is facilitating the development of genome-scale metabolic models for many organisms. By incorporating the metabolic reaction stoichiometry as well as other physicochemical properties into systemic network reconstructions, these models account for the constraints that restrict an organism’s phenotypic behavior. Accordingly, unlike many contemporary modeling strategies, this constraint-based modeling approach does not attempt to predict network behavior exactly; rather, it seeks to clearly distinguish those network states that a system can achieve from those that it cannot. A variety of analytical tools have been designed and developed to probe these models, thus enabling studies that investigate the metabolic capabilities of a number of organisms, that generate and test experimental hypotheses, and that predict accurately metabolic phenotypes and evolutionary outcomes. This chapter introduces the concepts that underlie the constraint-based modeling approach, and describes several of its applications with an emphasis on those potentially relevant to the drug development field. In addition, while this chapter focuses on the primary application of the constraint-based approach to date, namely in modeling metabolic networks, the latter sections of the chapter discuss its relatively recent application to modeling other cellular systems. Finally, the chapter concludes with an assessment of future directions focusing on the efforts that will be required to utilize the constraint-based approach in generating a holistic model of a viable organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E et al (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32 Database issue: D35–40

    PubMed  CAS  Google Scholar 

  2. Joyce AR, Palsson BO (2006) Themodel organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7(3): 198–210

    PubMed  CAS  Google Scholar 

  3. Arkin AP (2001) Synthetic cell biology. Curr Opin Biotechnol 12(6): 638–644

    PubMed  CAS  Google Scholar 

  4. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC et al (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1): 72–84

    PubMed  CAS  Google Scholar 

  5. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298(5596): 1241–1245

    PubMed  CAS  Google Scholar 

  6. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584): 1183–1186

    PubMed  CAS  Google Scholar 

  7. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4): 1633–1648

    PubMed  CAS  Google Scholar 

  8. Sarkar A, Franza BR (2004) A logical analysis of the process of T cell activation: different consequences depending on the state of CD28 engagement. J Theor Biol 226(4): 455–466

    PubMed  CAS  Google Scholar 

  9. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7(2): 130–141

    PubMed  CAS  Google Scholar 

  10. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11): 886–897

    PubMed  CAS  Google Scholar 

  11. Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4(3): 133–140

    PubMed  Google Scholar 

  12. Covert MW, Famili I, Palsson BO (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol Bioeng 84(7): 763–772

    PubMed  CAS  Google Scholar 

  13. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21(4): 162–169

    PubMed  CAS  Google Scholar 

  14. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10): 3724–3731

    PubMed  CAS  Google Scholar 

  15. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5): 491–496

    PubMed  CAS  Google Scholar 

  16. Price ND, Schellenberger J, Palsson BO (2004) Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J 87(4): 2172–2186

    PubMed  CAS  Google Scholar 

  17. Thiele I, Price ND, Vo TD, Palsson BO (2005) Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem 280(12): 11683–11695

    PubMed  CAS  Google Scholar 

  18. Neidhardt FC, Curtiss R (1996) Escherichia coli and Salmonella: Cellular and molecular biology. 2nd ed. ASM Press, Washington, DC, USA

    Google Scholar 

  19. Scheffler IE (1999) Mitochondria. Wiley-Liss, New York, USA

    Google Scholar 

  20. Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34(Database issue): D332–334

    PubMed  CAS  Google Scholar 

  21. Consortium CSAA (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055): 69–87

    Google Scholar 

  22. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982): 493–521

    PubMed  CAS  Google Scholar 

  23. Istrail S, Sutton GG, Florea L, Halpern AL, Mobarry CM, Lippert R, Walenz B, Shatkay H, Dew I, Miller JR et al (2004) Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci USA 101(7): 1916–1921

    PubMed  CAS  Google Scholar 

  24. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM et al (2003) The dog genome: survey sequencing and comparative analysis. Science 301(5641): 1898–1903

    PubMed  Google Scholar 

  25. Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2(7): 493–503

    PubMed  CAS  Google Scholar 

  26. Brent MR (2005) Genome annotation past, present, and future: how to define an ORF at each locus. Genome Res 15(12): 1777–1786

    PubMed  CAS  Google Scholar 

  27. Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19): 3787–3793

    PubMed  CAS  Google Scholar 

  28. Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18Suppl 1: S225–232

    PubMed  Google Scholar 

  29. Cash P (2003) Proteomics of bacterial pathogens. Adv Biochem Eng Biotechnol 83: 93–115

    PubMed  CAS  Google Scholar 

  30. Taylor SW, Fahy E, Ghosh SS (2003) Global organellar proteomics. Trends Biotechnol 21(2): 82–88

    PubMed  CAS  Google Scholar 

  31. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32 Database issue: D277–280

    PubMed  CAS  Google Scholar 

  32. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc Database. Nucleic Acids Res 30(1): 56–58

    PubMed  CAS  Google Scholar 

  33. Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt G, Munsterkotter M, Pagel P, Strack N, Stumpflen V et al (2004) MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32 Database issue: D41–44

    PubMed  CAS  Google Scholar 

  34. Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Feierbach B, Fisk DG, Hirschman JE et al (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32 Database issue: D311–314

    PubMed  CAS  Google Scholar 

  35. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY et al (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34 (Database issue): D511–516

    PubMed  CAS  Google Scholar 

  36. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19): 6083–6089

    PubMed  CAS  Google Scholar 

  37. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32 Database issue: D258–261

    PubMed  CAS  Google Scholar 

  38. (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34 (Database issue): D322–326

    Google Scholar 

  39. Serres MH, Goswami S, Riley M (2004) GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res 32 Database issue: D300–302

    PubMed  CAS  Google Scholar 

  40. Coulton G (2004) Are histochemistry and cytochemistry ‘Omics’? J Mol Histol 35(6): 603–613

    PubMed  Google Scholar 

  41. Arita M, Robert M, Tomita M (2005) All systems go: launching cell simulation fueled by integrated experimental biology data. Curr Opin Biotechnol 16(3): 344–349

    PubMed  CAS  Google Scholar 

  42. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959): 686–691

    PubMed  CAS  Google Scholar 

  43. Guda C, Subramaniam S (2005) pTARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics 21(21): 3963–3969

    PubMed  CAS  Google Scholar 

  44. Fields S (2005) High-throughput two-hybrid analysis. The promise and the peril. Febs J 272(21): 5391–5399

    PubMed  CAS  Google Scholar 

  45. Deeds EJ, Ashenberg O, Shakhnovich EI (2006) A simple physical model for scaling in protein-protein interaction networks. Proc Natl Acad Sci USA 103(2): 311–316

    PubMed  CAS  Google Scholar 

  46. Sprinzak E, Sattath S, Margalit H (2003) How reliable are experimental protein-protein interaction data? J Mol Biol 327(5): 919–923

    PubMed  CAS  Google Scholar 

  47. Palsson B (2004) Two-dimensional annotation of genomes. Nat Biotechnol 22(10): 1218–1219

    PubMed  CAS  Google Scholar 

  48. Beard DA, Liang SD, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83(1): 79–86

    PubMed  CAS  Google Scholar 

  49. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987): 92–96

    PubMed  CAS  Google Scholar 

  50. Covert MW, Palsson BO (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 221(3): 309–325

    PubMed  CAS  Google Scholar 

  51. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1): 73–88

    PubMed  CAS  Google Scholar 

  52. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277(31): 28058–28064

    PubMed  CAS  Google Scholar 

  53. Chvatal V (1983) Linear Programming. WH Freeman and Company, New York, USA

    Google Scholar 

  54. Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14(9): 1797–1805

    PubMed  CAS  Google Scholar 

  55. Vo TD, Greenberg HJ, Palsson BO (2004) Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem 279(38): 39532–39540

    PubMed  CAS  Google Scholar 

  56. Barrett CL, Herring CD, Reed JL, Palsson BO (2005) The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc Natl Acad Sci USA 102(52): 19103–19108

    PubMed  CAS  Google Scholar 

  57. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell. Sinauer Associates, Inc., Sunderland, MA, USA

    Google Scholar 

  58. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9): R54

    PubMed  Google Scholar 

  59. Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9): 2692–2699

    PubMed  CAS  Google Scholar 

  60. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10): 5528–5533

    PubMed  CAS  Google Scholar 

  61. Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184(16): 4582–4593

    PubMed  CAS  Google Scholar 

  62. Thiele I, Vo TD, Price ND, Palsson B (2005) An expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): An in silico genome-scale characterization of single and double deletion mutants. J Bacteriol 187(16): 5818–5830

    PubMed  CAS  Google Scholar 

  63. Becker SA, Palsson BO (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5(1): 8

    PubMed  Google Scholar 

  64. Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR (2006) Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72(2): 1558–1568

    PubMed  CAS  Google Scholar 

  65. Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15(6): 820–829

    PubMed  CAS  Google Scholar 

  66. Feist AM, Scholten JCM, Palsson BO, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2(1): msb4100046-E1-msb4100046-E14

    Google Scholar 

  67. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2): 244–253

    PubMed  CAS  Google Scholar 

  68. Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7): 1298–1309

    PubMed  CAS  Google Scholar 

  69. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15(10): 1421–1430

    PubMed  CAS  Google Scholar 

  70. Almaas E, Oltvai ZN, Barabasi AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1(7): e68

    PubMed  Google Scholar 

  71. Segre D, DeLuna A, Church GM, Kishnoy R (2005) Modular epistasis in yeast metabolism. Nat Genet 37(1): 77–83

    PubMed  CAS  Google Scholar 

  72. Sheikh K, Forster J, Nielsen LK (2005) Modeling hybridomacell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21(1): 112–121

    PubMed  CAS  Google Scholar 

  73. Wiback SJ, Palsson BO (2002) Extreme pathway analysis of human red blood cell metabolism. Biophys J 83(2): 808–818

    PubMed  CAS  Google Scholar 

  74. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524–531

    PubMed  CAS  Google Scholar 

  75. Novere NL, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23(12): 1509–1515

    PubMed  Google Scholar 

  76. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203(3): 249–283

    PubMed  CAS  Google Scholar 

  77. Forster J, Famili I, Palsson BO, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics 7(2): 193–202

    PubMed  Google Scholar 

  78. Hartwell L (2004) Genetics. Robust interactions. Science 303(5659): 774–775

    PubMed  CAS  Google Scholar 

  79. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659): 808–813

    PubMed  CAS  Google Scholar 

  80. Heinemann M, Kummel A, Ruinatscha R, Panke S (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 92(7): 850–864

    PubMed  CAS  Google Scholar 

  81. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. 2(1): pmsb4100050-E1-msb4100050-E11

    Google Scholar 

  82. Glasner JD, Liss P, Plunkett G 3rd, Darling A, Prasad T, Rusch M, Byrnes A, Gilson M, Biehl B, Blattner FR et al (2003) ASAP, a systematic annotation package for community analysis of genomes. Nucleic Acids Res 31(1): 147–151

    PubMed  CAS  Google Scholar 

  83. Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C et al (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32 Database issue: D303–306

    PubMed  CAS  Google Scholar 

  84. Palsson BO (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, UK

    Google Scholar 

  85. Price ND, Thiele I, Palsson BO (2006) Candidate states of Helicobacter pylori’s genome-scale metabolic network upon application of loop law thermodynamic constraints. Biophys J 90(11): 3919–3928

    PubMed  CAS  Google Scholar 

  86. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977): 839–843

    PubMed  CAS  Google Scholar 

  87. Allen TE, Palsson BO (2003) Sequence-based analysis of metabolic demands for protein synthesis in prokaryotes. J Theor Biol 220(1): 1–18

    PubMed  CAS  Google Scholar 

  88. Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2): 99–111

    PubMed  CAS  Google Scholar 

  89. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J Theor Biol 165(4): 503–522

    CAS  Google Scholar 

  90. Papin JA, Palsson BO (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 227(2): 283–297

    PubMed  Google Scholar 

  91. Papin JA, Palsson BO (2004) The JAK-STAT signaling network in the human Bcell: an extreme signaling pathway analysis. Biophys J 87(1): 37–46

    PubMed  CAS  Google Scholar 

  92. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway Analysis. J Theor Biol 203(3): 249–283

    PubMed  CAS  Google Scholar 

  93. Bell SL, Palsson BO (2005) Expa: a program for calculating extreme pathways in biochemical reaction networks. Bioinformatics 21(8): 1739–1740

    PubMed  CAS  Google Scholar 

  94. Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5): 627–635

    PubMed  CAS  Google Scholar 

  95. Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO (2006) Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol 2(8): e101

    PubMed  Google Scholar 

  96. Papin JA, Price ND, Palsson BO (2002) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res 12(12): 1889–1900

    PubMed  CAS  Google Scholar 

  97. Price ND, Reed JL, Papin JA, Famili I, Palsson BO (2003) Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys J 84(2 Pt 1): 794–804

    PubMed  CAS  Google Scholar 

  98. Price ND, Papin JA, Palsson BO (2002) Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res 12(5): 760–769

    PubMed  CAS  Google Scholar 

  99. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5): 643–648

    PubMed  CAS  Google Scholar 

  100. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6): 647–657

    PubMed  CAS  Google Scholar 

  101. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S et al (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 34 (Database issue): D173–180

    PubMed  CAS  Google Scholar 

  102. Park SM, Schilling CH, Palsson BO (2003) Compositions and methods for modeling Bacillus subtilis metabolism. US Patent and Trademark Office, USA

    Google Scholar 

  103. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25): 17410–17416

    PubMed  CAS  Google Scholar 

  104. Oliveira AP, Nielsen J, Forster J (2005) Modeling Lactococcus lactis using a genomescale flux model. BMC Microbiol 5: 39

    PubMed  Google Scholar 

  105. Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22(10): 1275–1281

    PubMed  CAS  Google Scholar 

  106. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21(3): 281–286

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag

About this chapter

Cite this chapter

Joyce, A.R., Palsson, B.Ø. (2007). Toward whole cell modeling and simulation: Comprehensive functional genomics through the constraint-based approach. In: Boshoff, H.I., Barry, C.E. (eds) Systems Biological Approaches in Infectious Diseases. Progress in Drug Research, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7567-6_11

Download citation

Publish with us

Policies and ethics