Skip to main content

Pathogenesis of Mycoplasma pneumoniae infections:adaptive immunity, innate immunity, cell biology, and virulence factors

  • Chapter

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Mycoplasmas represent the smallest self-replicating organisms. They are unique among bacteria in that they lack a cell wall and require sterols for growth. The limited metabolic and biosynthetic activities of mycoplasmas have complicated development of accurate means for laboratory detection and hampered understanding of their roles as human pathogens. Mycoplasma pneumoniae was first identified and characterized in the 1960s and shown to be a common cause of upper and lower respiratory disease in children and adults. Serious infections requiring hospitalization, while rare, occur in persons of all age groups, and may affect multiple organ systems. Severity of disease appears to be related to the degree to which the host immune response reacts to the infection. Extrapulmonary complications involving all of the major organ systems can occur in association with M. pneumoniae infection as a result of direct invasion and/or autoimmune response. Evidence is accumulating for this organism’s contributory role in chronic lung conditions such as asthma. Serology has been the most common means for laboratory detection of M. pneumoniae infection due to the slow growth that makes culture impractical. Newer diagnostic methods utilizing nucleic acid amplification offer the advantages for rapid detection and are likely to become increasingly important in the future, but these techniques have not achieved widespread utilization thus far due to the lack of commercially sold products and non-standardized methodology. Management of M. pneumoniae infections can usually be achieved with macrolides, ketolides, tetracyclines, or fluoroquinolones. As more is learned about pathogenesis and immune response elicited by M. pneumoniae, improved methods for diagnosis and prevention of disease due to this organism are anticipated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24: 4420–4449

    Article  PubMed  CAS  Google Scholar 

  2. Miyata M (2002) Gliding motility of mycoplasma-a mechanism cannot be explained by today’s biology. Nippon Saikingaku Zasshi 57: 581–595

    PubMed  CAS  Google Scholar 

  3. Foy HM (1993) Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients. Clin Infect Dis 17 (Suppl 1): S37–46

    Google Scholar 

  4. Lind K, Benzon MW, Jensen JS, Clyde WA, Jr (1997) A seroepidemiological study of Mycoplasma pneumoniae infections in Denmark over the 50-year period 1946-1995. Eur J Epidemiol 13: 581–586

    Article  PubMed  CAS  Google Scholar 

  5. Block S, Hedrick J, Hammerschlag MR, Cassell GH, Craft JC (1995) Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs. erythromycin ethylsuccinate. Pediatr Infect Dis J 14: 471–477

    Article  PubMed  CAS  Google Scholar 

  6. Layani-Milon MP, Gras I, Valette M, Luciani J, Stagnara J, Aymard M, Lina B (1999) Incidence of upper respiratory tract Mycoplasma pneumoniae infections among outpatients in Rhone-Alpes, France, during five successive winter periods. J Clin Microbiol 37: 1721–1726

    PubMed  CAS  Google Scholar 

  7. Marston BJ, Plouffe JF, File TM Jr, Hackman BA, Salstrom SJ, Lipman HB, Kolczak MS, Breiman RF (1997) Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance Study in Ohio. The Community-Based Pneumonia Incidence Study Group. Arch Intern Med 157: 1709–1718

    Article  PubMed  CAS  Google Scholar 

  8. Cousin-Allery A, Charron A, de Barbeyrac B, Fremy G, Skov Jensen J, Renaudin H, Bebear C (2000) Molecular typing of Mycoplasma pneumoniae strains by PCR-based methods and pulsed-field gel electrophoresis. Application to French and Danish isolates. Epidemiol Infect 124: 103–111

    Article  PubMed  CAS  Google Scholar 

  9. Dumke R, Catrein I, Pirkil E, Herrmann R, Jacobs E (2003) Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. Int J Med Microbiol 292: 513–525

    Article  PubMed  CAS  Google Scholar 

  10. Chmura K, Lutz RD, Chiba H, Numata MS, Choi HJ, Fantuzzi G, Voelker DR, Chan ED (2003) Mycoplasma pneumoniae antigens stimulate interleukin-8. Chest 123: 425S

    Google Scholar 

  11. Yang J, Hooper WC, Phillips DJ, Talkington DF (2002) Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Infect Immun 70: 3649–3655

    Article  PubMed  CAS  Google Scholar 

  12. Roberts DD, Olson LD, Barile MF, Ginsburg V, Krivan HC (1989) Sialic acid dependent adhesion of Mycoplasma pneumoniae to purified glycoproteins. J Biol Chem 264: 9289–9293

    PubMed  CAS  Google Scholar 

  13. Dallo SF, Kannan TR, Blaylock MW, Baseman JB (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46: 1041–1051

    Article  PubMed  CAS  Google Scholar 

  14. Dallo SF, Baseman JB (2000) Intracellular DNA replication and long-term survival of pathogenic mycoplasmas. Microb Pathog 29: 301–309

    Article  PubMed  CAS  Google Scholar 

  15. Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17: 697–728

    Article  PubMed  CAS  Google Scholar 

  16. Bredt W, Kist M, Jacobs E (1981) Phagocytosis and complement action. Isr J Med Sci 17: 637–640

    PubMed  CAS  Google Scholar 

  17. Loos M, Brunner H (1979) Complement components (C1, C2, C3, C4) in bronchial secretions after intranasal infection of guinea pigs with Mycoplasma pneumoniae: dissociation of unspecific and specific defense mechanisms. Infect Immun 25: 583–585

    PubMed  CAS  Google Scholar 

  18. Hamvas RM, Johnson M, Vlieger AM, Ling C, Sherriff A, Wade A, Klein NJ, Turner MW, Webster AD (2005) Role for mannose binding lectin in the prevention of mycoplasma infection. Infect Immun 73: 5238–5240

    Article  PubMed  CAS  Google Scholar 

  19. Phiboonpocanum S, Chiba H, Mitsuzawa H, Martin W, Murphy RC, Harbeck RJ, Voelker RB (2005) Surfactant protein A binds Mycoplasma pneumoniae with high affinity and attenuates its growth by recognition of desaturated phosphatidylglycerols. J Biol Chem 280: 9–17

    Google Scholar 

  20. Hoek KL, Cassell GH, Duffy LB, Atkinson TP (2002) Mycoplasma pneumoniae-induced activation and cytokine production in rodent mast cells. J Allergy Clin Immunol 109: 470–476

    Article  PubMed  CAS  Google Scholar 

  21. Hoek KL, Duffy LB, Cassell GH, Atkinson TP (2005) A role for the Mycoplasma pneumoniae adhesin P1 in Interleukin (IL)-4 synthesis and release from rodent mast cells. Microb Pathog 39: 149–158

    Article  PubMed  CAS  Google Scholar 

  22. Into T, Nodasaka Y, Hasebe A, Okuzawa T, Nakamura J, Ohata N, Shibata K (2002) Mycoplasmal lipoproteins induce toll-like receptor 2-and caspasesmediated cell death in lymphocytes and monocytes. Microbiol Immunol 46: 265–276

    PubMed  CAS  Google Scholar 

  23. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2-and MyD88-dependent signaling pathway. J Immunol 164: 554–557

    PubMed  CAS  Google Scholar 

  24. Taylor-Robinson D, Webster AD, Furr PM, Asherson GL (1980) Prolonged persistence of Mycoplasma pneumoniae in a patient with hypogammaglobulinaemia. J Infect 2: 171–175

    Article  PubMed  CAS  Google Scholar 

  25. Johnston CL, Webster AD, Taylor-Robinson D, Rapaport G, Hughes GR (1983) Primary late-onset hypogammaglobulinaemia associated with inflammatory polyarthritis and septic arthritis due to Mycoplasma pneumoniae. Ann RheumDis 42: 108–110

    CAS  Google Scholar 

  26. Hayakawa M, Taguchi H, Kamiya S, Fujioka Y, Watanabe H, Kawai S, Kobayashi H (2002) Animal model of Mycoplasma pneumoniae infection using germfree mice. Clin Diagn Lab Immunol 9: 669–676

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, Abe S (2002) Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest 121: 1493–1497

    Article  PubMed  CAS  Google Scholar 

  28. Opitz O, Pietsch K, Ehlers S, Jacobs E (1996) Cytokine gene expression in immune mice reinfected with Mycoplasma pneumoniae: the role of T cell subsets in aggravating the inflammatory response. Immunobiology 196: 575–587

    PubMed  Google Scholar 

  29. Taylor G, Taylor-Robinson D, Fernald GW (1974) Reduction in the severity of Mycoplasma pneumoniae-induced pneumonia in hamsters by immunosuppressive treatment with antithymocyte sera. J Med Microbiol 7: 343–348

    Article  PubMed  CAS  Google Scholar 

  30. Cartner SC, Lindsey JR, Gibbs-Erwin J, Cassell GH, Simecka JW (1998) Roles of innate and adaptive immunity in respiratory mycoplasmosis. Infect Immun 66: 3485–3491

    PubMed  CAS  Google Scholar 

  31. Jones H, Tabor L, Sun X, Woolard M, Simecka JW (2002) Depletion of CD8+ T cells exacerbates CD4+ Th cell asociated inflammatory lesions during murine respiratory disease. J Immunol 168: 3493–3501

    PubMed  CAS  Google Scholar 

  32. Kraft M, Cassell GH, Henson JE, Watson H, Williamson J, Marmion BP, Gaydos CA, Martin RJ (1998) Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med 158: 998–1001

    PubMed  CAS  Google Scholar 

  33. Gil JC, Cedillo RL, Mayagoitia BG, Paz MD (1993) Isolation of Mycoplasma pneumoniae from asthmatic patients. Ann Allergy 70: 23–25

    PubMed  CAS  Google Scholar 

  34. Seggev JS, Lis I, Siman-Tov R, Gutman R, Abu-Samara H, Schey G, Naot Y (1986) Mycoplasma pneumoniae is a frequent cause of exacerbation of bronchial asthma in adults. Ann Allergy 57: 263–265

    PubMed  CAS  Google Scholar 

  35. Kraft M, Cassell GH, Pak J, Martin RJ (2002) Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 121: 1782–1788

    Article  PubMed  CAS  Google Scholar 

  36. Martin RJ, Chu HW, Honour JM, Harbeck RJ (2001) Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model. Am J Respir Cell Mol Biol 24: 577–582

    PubMed  CAS  Google Scholar 

  37. Koh YY, Park Y, Lee HJ, Kim CK (2001) Levels of interleukin-2, interferongamma, and interleukin-4 in bronchoalveolar lavage fluid from patients with Mycoplasma pneumonia: implication of tendency toward increased immunoglobulin E production. Pediatrics 107: E39

    Google Scholar 

  38. Gump DW, Phillips CA, Forsyth BR, McIntosh K, Lamborn KR, Stouch WH (1976) Role of infection in chronic bronchitis. Am Rev Respir Dis 113: 465–474

    PubMed  CAS  Google Scholar 

  39. Talkington DF, Shott S, Fallon MT, Schwartz SB, Thacker WL (2004) Analysis of eight commercial enzyme immunoassay tests for detection of antibodies to Mycoplasma pneumoniae in human serum. Clin Diagn Lab Immunol 11: 862–867

    Article  PubMed  CAS  Google Scholar 

  40. Morozumi M, Hasegawa K, Kobayashi R, Inoue N, Iwata S, Kuroki H, Kawamura N, Nakayama E, Tajima T, Shimizu K et al (2005) Emergence of macrolide-resistant Mycoplasma pneumoniae with a 23S rRNA gene mutation. Antimicrob Agents Chemother 49: 2302–2306

    Article  PubMed  CAS  Google Scholar 

  41. Carpenter TC (2002) Corticosteroids in the treatment of etriatal encephalitis complicating Mycoplasma pneumoniae pneumonia: possible benefit of intravenous immunoglobulin. Pediatr Infect Dis J 20: 534–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Waites, K.B., Simecka, J.W., Talkington, D.F., Atkinson, T.P. (2007). Pathogenesis of Mycoplasma pneumoniae infections:adaptive immunity, innate immunity, cell biology, and virulence factors. In: Community-Acquired Pneumonia. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7563-8_9

Download citation

Publish with us

Policies and ethics