Pathogenesis of Streptococcus pneumoniae infections:adaptive immunity, innate immunity, cell biology, virulence factors

  • Sven Hammerschmidt
  • Simone Bergmann
  • Gavin K. Paterson
  • Timothy J. Mitchell
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


During the past two decades the intense study of the infection process of Streptococcus pneumoniae has elucidated multifaceted interactions of the human pathogenic bacterium with the host. A broad spectrum of pneumococcal virulence factors, which are adapted successfully to different host niches, is involved either predominantly in nasopharyngeal colonization or subsequently in dissemination and transmigration of host tissue barriers. The severe course of infections becomes manifest in invasive diseases like pneumonia, meningitis and septicaemia.

To escape the risk of increasing antibiotic resistance and to combat the threat of pneumococcal infections pneumococcal vaccines have been developed. The carrier protein of the current available heptavalent vaccine is not derived from pneumococci therefore it is thought to substitute this carrier by a highly conserved and immunogenic pneumococcal- specific protein. S. pneumoniae is a versatile microorganism and has evolved numerous successful strategies to colonize its host and to evade host defence mechanisms. In this report we discuss the bacterial repertoire of virulence factors and provide insights into the surface protein variability. In addition, we show the impact of these virulence factors on interactions with host components, including cellular receptors and how the function of these proteins contributes to colonization and virulence of S. pneumoniae. The non-invasive and invasive infections are accompanied by immune responses of both the innate and adaptive immune system. These two systems operate in concert to combat infections, but pneumococci have developed highly sophisticated mechanisms to subvert the host immune system. We introduce pattern recognition receptors that recognize specific structures of pneumococci and stimulate thereby host defence mechanisms.


Streptococcus Pneumoniae Pneumococcal Disease Capsular Polysaccharide Pneumococcal Meningitis Pneumococcal Pneumonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartwright K (2002) Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 161: 188–195PubMedGoogle Scholar
  2. 2.
    Brown PD, Lerner SA (1998) Empirical therapy for community-acquired pneumonia. Ann Intern Med 129: 510Google Scholar
  3. 3.
    Obaro S, Adegbola R (2002) The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol 51: 98–104PubMedGoogle Scholar
  4. 4.
    Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2: 721–736PubMedGoogle Scholar
  5. 5.
    Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45: 1389–1406PubMedGoogle Scholar
  6. 6.
    Ogunniyi AD, Giammarinaro P, Paton JC (2002) The genes encoding virulenceassociated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148: 2045–2053PubMedGoogle Scholar
  7. 7.
    Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72: 5582–5596PubMedGoogle Scholar
  8. 8.
    Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66: 5620–5629PubMedGoogle Scholar
  9. 9.
    Marra A, Lawson S, Asundi JS, Brigham D, Hromockyj AE (2002) In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148: 1483–1491PubMedGoogle Scholar
  10. 10.
    Henrichsen J (1995) Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 33: 2759–2762PubMedGoogle Scholar
  11. 11.
    Gillespie SH (1989) Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J Med Microbiol 28: 237–248PubMedGoogle Scholar
  12. 12.
    Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rumke HC, Verbrugh HA, Hermans PW (2004) Colonization by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 363: 1871–1872PubMedGoogle Scholar
  13. 13.
    Musher DM (1992) Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin Infect Dis 14: 801–807PubMedGoogle Scholar
  14. 14.
    Mulholland K (1999) Strategies for the control of pneumococcal diseases. Vaccine 17 Suppl 1: S79–S84PubMedGoogle Scholar
  15. 15.
    AlonsoDeVelasco E, Verheul AF, Verhoef J, Snippe H (1995) Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59: 591–603PubMedGoogle Scholar
  16. 16.
    Lloyd-Evans N, O’Dempsey TJ, Baldeh I, Secka O, Demba E, Todd JE, McArdle TF, Banya WS, Greenwood BM (1996) Nasopharyngeal carriage of pneumococci in Gambian children and in their families. Pediatr Infect Dis J 15: 866–871PubMedGoogle Scholar
  17. 17.
    Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG (2003) Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype-and clone-specific differences in invasive disease potential. J Infect Dis 187: 1424–1432PubMedGoogle Scholar
  18. 18.
    Ghaffar F, Friedland IR, McCracken GH, Jr (1999) Dynamics of nasopharyngeal colonization by Streptococcus pneumoniae. Pediatr Infect Dis J 18: 638–646PubMedGoogle Scholar
  19. 19.
    Weiser JN, Austrian R, Sreenivasan PK, Masure HR (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62: 2582–2589PubMedGoogle Scholar
  20. 20.
    Tong HH, Weiser JN, James MA, DeMaria TF (2001) Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotype variants of Streptococcus pneumoniae in the chinchilla model. Infect Immun 69: 602–606PubMedGoogle Scholar
  21. 21.
    Weiser JN (2000) Phase variation of Streptococcus pneumoniae. In: Fischetti VA (ed): Gram-positive pathogens. ASM Press, Washington DC, 225–231Google Scholar
  22. 22.
    Kim JO, Weiser JN (1998) Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis 177: 368–377PubMedGoogle Scholar
  23. 23.
    Magee AD, Yother J (2001) Requirement for capsule in colonization by Streptococcus pneumoniae. Infect Immun 69: 3755–3761PubMedGoogle Scholar
  24. 24.
    Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102: 347–360PubMedGoogle Scholar
  25. 25.
    Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M (2005) Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73: 4653–4667PubMedGoogle Scholar
  26. 26.
    Adamou JE, Wizemann TM, Barren P, Langermann S (1998) Adherence of Streptococcus pneumoniae to human bronchial epithelial cells (BEAS-2B). Infect Immun 66: 820–822PubMedGoogle Scholar
  27. 27.
    Kostrzynska M, Wadstrom T (1992) Binding of laminin, type IV collagen, and vitronectin by Streptococcus pneumoniae. Zentralbl Bakteriol 277: 80–83PubMedGoogle Scholar
  28. 28.
    van der Flier M, Chhun N, Wizemann TM, Min J, McCarthy JB, Tuomanen EI (1995) Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect Immun 63: 4317–4322PubMedGoogle Scholar
  29. 29.
    Steinfort C, Wilson R, Mitchell T, Feldman C, Rutman A, Todd H, Sykes D, Walker J, Saunders K, Andrew PW et al (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect Immun 57: 2006–2013PubMedGoogle Scholar
  30. 30.
    Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69: 845–852PubMedGoogle Scholar
  31. 31.
    Hirst RA, Sikand KS, Rutman A, Mitchell TJ, Andrew PW, O’Callaghan C (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 68: 1557–1562PubMedGoogle Scholar
  32. 32.
    Tuomanen EI, Austrian R, Masure HR (1995) Pathogenesis of pneumococcal infection. N Engl J Med 332: 1280–1284PubMedGoogle Scholar
  33. 33.
    Catterall JR (1999) Streptococcus pneumoniae. Thorax 54: 929–937PubMedGoogle Scholar
  34. 34.
    Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28: 553–580Google Scholar
  35. 35.
    Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68: 5690–5695PubMedGoogle Scholar
  36. 36.
    Sanchez-Beato AR, Lopez R, Garcia JL (1998) Molecular characterization of PcpA: a novel choline-binding protein of Streptococcus pneumoniae. FEMS Microbiol Lett 164: 207–214PubMedGoogle Scholar
  37. 37.
    Johnson MK, Geoffroy C, Alouf JE (1980) Binding of cholesterol by sulfhydrylactivated cytolysins. Infect Immun 27: 97–101PubMedGoogle Scholar
  38. 38.
    Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269: 25315–25320PubMedGoogle Scholar
  39. 39.
    Morgan PJ, Hyman SC, Rowe AJ, Mitchell TJ, Andrew PW, Saibil HR (1995) Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. FEBS Lett 371: 77–80PubMedGoogle Scholar
  40. 40.
    Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121: 247–256PubMedGoogle Scholar
  41. 41.
    Preissner KT, Chhatwal GS (1999) Extracellular matrix (ECM) and host-cell surfaces: Potential sites of pathogen interaction. Washington DC, ASM PressGoogle Scholar
  42. 42.
    Geelen S, Bhattacharyya C, Tuomanen E (1993) The cell wall mediates pneumococcal attachment to and cytopathology in human endothelial cells. Infect Immun 61: 1538–1543PubMedGoogle Scholar
  43. 43.
    Andersson B, Eriksson B, Falsen E, Fogh A, Hanson LA, Nylen O, Peterson H, Svanborg EC (1981) Adhesion of Streptococcus pneumoniae to human pharyngeal epithelial cells in vitro: differences in adhesive capacity among strains isolated from subjects with otitis media, septicemia, or meningitis or from healthy carriers. Infect Immun 32: 311–317PubMedGoogle Scholar
  44. 44.
    Krivan HC, Roberts DD, Ginsburg V (1988) Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4 Gal found in some glycolipids. Proc Natl Acad Sci USA 85: 6157–6161PubMedGoogle Scholar
  45. 45.
    Cundell DR, Tuomanen EI (1994) Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microb Pathog 17: 361–374PubMedGoogle Scholar
  46. 46.
    Shakhnovich EA, King SJ, Weiser JN (2002) Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70: 7161–7164PubMedGoogle Scholar
  47. 47.
    King SJ, Hippe KR, Gould JM, Bae D, Peterson S, Cline RT, Fasching C, Janoff EN, Weiser JN (2004) Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol 54: 159–171PubMedGoogle Scholar
  48. 48.
    King SJ, Whatmore AM, Dowson CG (2005) NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis. J Bacteriol 187: 5376–5386PubMedGoogle Scholar
  49. 49.
    Tong HH, Liu X, Chen Y, James M, Demaria T (2002) Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol 122: 413–419PubMedGoogle Scholar
  50. 50.
    Berry AM, Paton JC (2000) Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68: 133–140PubMedGoogle Scholar
  51. 51.
    Chapuy-Regaud S, Ogunniyi AD, Diallo N, Huet Y, Desnottes JF, Paton JC, Escaich S, Trombe MC (2003) RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae 1319 Infect Immun 71: 2615–2625PubMedGoogle Scholar
  52. 52.
    Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci USA 100: 4215–4220PubMedGoogle Scholar
  53. 53.
    Kausmally L, Johnsborg O, Lunde M, Knutsen E, Havarstein LS (2005) Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol 187: 4338–4345PubMedGoogle Scholar
  54. 54.
    Guiral S, Mitchell TJ, Martin B, Claverys JP (2005) Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci USA 102: 8710–8715PubMedGoogle Scholar
  55. 55.
    Hermans PW, Adrian PV, Albert C, Estevao S, Hoogenboezem T, Luijendijk IH, Kamphausen T, Hammerschmidt S (2006) The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonisation. J Biol Chem 281: 968–976PubMedGoogle Scholar
  56. 56.
    Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25: 727–739PubMedGoogle Scholar
  57. 57.
    Tseng HJ, McEwan AG, Paton JC, Jennings MP (2002) Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70: 1635–1639PubMedGoogle Scholar
  58. 58.
    Romero-Steiner S, Pilishvili T, Sampson JS, Johnson SE, Stinson A, Carlone GM, Ades EW (2003) Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin Diagn Lab Immunol 10: 246–251PubMedGoogle Scholar
  59. 59.
    Johnson SE, Dykes JK, Jue DL, Sampson JS, Carlone GM, Ades EW (2002) Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin a. J Infect Dis 185: 489–496PubMedGoogle Scholar
  60. 60.
    Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS (1997) SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component 13. Mol Microbiol 25: 1113–1124PubMedGoogle Scholar
  61. 61.
    Hammerschmidt S, Tillig MP, Wolff S, Vaerman JP, Chhatwal GS (2000) Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36: 726–736PubMedGoogle Scholar
  62. 62.
    Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827–837PubMedGoogle Scholar
  63. 63.
    Elm C, Braathen R, Bergmann S, Frank R, Vaerman JP, Kaetzel CS, Chhatwal GS, Johansen FE, Hammerschmidt S (2004) Ectodomains 3 and 4 of human polymeric Immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279: 6296–6304PubMedGoogle Scholar
  64. 64.
    Lu L, Lamm ME, Li H, Corthesy B, Zhang JR (2003) The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J Biol Chem 278: 48178–48187PubMedGoogle Scholar
  65. 65.
    Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae 32. Mol Microbiol 25: 819–829PubMedGoogle Scholar
  66. 66.
    Smith BL, Hostetter MK (2000) C3 as substrate for adhesion of Streptococcus pneumoniae. J Infect Dis 182: 497–508PubMedGoogle Scholar
  67. 67.
    Dave S, Brooks-Walter A, Pangburn MK, McDaniel LS (2001) PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 69: 3435–3437PubMedGoogle Scholar
  68. 68.
    Iannelli F, Oggioni MR, Pozzi G (2002) Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae 41. Gene 284: 63–71PubMedGoogle Scholar
  69. 69.
    Luo R, Mann B, Lewis WS, Rowe A, Heath R, Stewart ML, Hamburger AE, Sivakolundu S, Lacy ER, Bjorkman PJ et al (2005) Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J 24: 34–43PubMedGoogle Scholar
  70. 70.
    Holmes AR, McNab R, Millsap KW, Rohde M, Hammerschmidt S, Mawdsley JL, Jenkinson HF (2001) The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41: 1395–1408PubMedGoogle Scholar
  71. 71.
    Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R, Hammerschmidt S (2005) PavA of Streptococcus pneumoniae Modulates Adherence, Invasion, and Meningeal Inflammation. Infect Immun 73: 2680–2689PubMedGoogle Scholar
  72. 72.
    Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40: 1273–1287PubMedGoogle Scholar
  73. 73.
    Bergmann S, Rohde M, Hammerschmidt S (2004) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72: 2416–2419PubMedGoogle Scholar
  74. 74.
    Bergmann S, Rohde M, Preissner KT, Hammerschmidt S (2005) The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94: 304–311PubMedGoogle Scholar
  75. 75.
    Bergmann S, Wild D, Diekmann O, Frank R, Bracht D, Chhatwal GS, Hammerschmidt S (2003) Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49: 411–423PubMedGoogle Scholar
  76. 76.
    Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW (2004) Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343: 997–1005PubMedGoogle Scholar
  77. 77.
    Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435–438PubMedGoogle Scholar
  78. 78.
    De Las Rivas B, Garcia JL, Lopez R, Garcia P (2001) Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 7: 213–222PubMedGoogle Scholar
  79. 79.
    Vollmer W, Tomasz A (2001) Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 39: 1610–1622PubMedGoogle Scholar
  80. 80.
    Garau G, Lemaire D, Vernet T, Dideberg O, Di Guilmi AM (2005) Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from streptococcus pneumoniae: new structural features among the metallo-beta-lactamase superfamily. J Biol Chem 280: 28591–28600PubMedGoogle Scholar
  81. 81.
    Hermoso JA, Lagartera L, Gonzalez A, Stelter M, Garcia P, Martinez-Ripoll M, Garcia JL, Menendez M (2005) Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nat Struct Mol Biol 12: 533–538PubMedGoogle Scholar
  82. 82.
    Amatruda TT, III, Gerard NP, Gerard C, Simon MI (1993) Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem 268: 10139–10144PubMedGoogle Scholar
  83. 83.
    Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI (2005) beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 73: 7827–7835PubMedGoogle Scholar
  84. 84.
    Wang E, Ouellet N, Simard M, Fillion I, Bergeron Y, Beauchamp D, Bergeron MG (2001) Pulmonary and systemic host response to Streptococcus pneumoniae and Klebsiella pneumoniae bacteremia in normal and immunosuppressed mice. Infect Immun 69: 5294–5304PubMedGoogle Scholar
  85. 85.
    Bergeron Y, Ouellet N, Deslauriers AM, Simard M, Olivier M, Bergeron MG (1998) Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect Immun 66: 912–922PubMedGoogle Scholar
  86. 86.
    Heumann D, Barras C, Severin A, Glauser MP, Tomasz A (1994) Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun 62: 2715–2721PubMedGoogle Scholar
  87. 87.
    Spellerberg B, Rosenow C, Sha W, Tuomanen EI (1996) Pneumococcal cell wall activates NF-kappa B in human monocytes: aspects distinct from endotoxin. Microb Pathog 20: 309–317PubMedGoogle Scholar
  88. 88.
    Schmeck B, Zahlten J, Moog K, van Laak V, Huber S, Hocke AC, Opitz B, Hoffmann E, Kracht M, Zerrahn J et al (2004) Streptococcus pneumoniaeinduced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J Biol Chem 279: 53241–53247PubMedGoogle Scholar
  89. 89.
    Blue CE, Paterson GK, Kerr AR, Berge M, Claverys JP, Mitchell TJ (2003) ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun 71: 4925–4935PubMedGoogle Scholar
  90. 90.
    Oggioni MR, Memmi G, Maggi T, Chiavolini D, Iannelli F, Pozzi G (2003) Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 49: 795–805PubMedGoogle Scholar
  91. 91.
    Sebert ME, Palmer LM, Rosenberg M, Weiser JN (2002) Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70: 4059–4067PubMedGoogle Scholar
  92. 92.
    Mascher T, Zahner D, Merai M, Balmelle N, de Saizieu AB, Hakenbeck R (2003) The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185: 60–70PubMedGoogle Scholar
  93. 93.
    Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ (2004) Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol 186: 5258–5266PubMedGoogle Scholar
  94. 94.
    Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ (2004) Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect Immun 72: 3584–3591PubMedGoogle Scholar
  95. 95.
    Bethe G, Nau R, Wellmer A, Hakenbeck R, Reinert RR, Heinz HP, Zysk G (2001) The cell wall-associated serine protease PrtA: a highly conserved virulence factor of Streptococcus pneumoniae. FEMS Microbiol Lett 205: 99–104PubMedGoogle Scholar
  96. 96.
    Ren B, Szalai AJ, Hollingshead SK, Briles DE (2004) Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface 14. Infect Immun 72: 114–122PubMedGoogle Scholar
  97. 97.
    Hammerschmidt S, Bethe G, Remane PH, Chhatwal GS (1999) Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae 60. Infect Immun 67: 1683–1687PubMedGoogle Scholar
  98. 98.
    Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE (2004) PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72: 5031–5040PubMedGoogle Scholar
  99. 99.
    Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu DJ, Fuller W et al (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183: 5709–5717PubMedGoogle Scholar
  100. 100.
    Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ et al (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498–506PubMedGoogle Scholar
  101. 101.
    Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF, Ge Y, Marra A, Wallis NG, Brown JR, Holmes DJ et al (2000) A genomic analysis of twocomponent signal transduction in Streptococcus pneumoniae. Mol Microbiol 35: 566–576PubMedGoogle Scholar
  102. 102.
    Guenzi E, Hakenbeck R (1995) Genetic competence and susceptibility to beta-lactam antibiotics in Streptococcus pneumoniae R6 are linked via a twocomponent signal-transducing system cia. Dev Biol Stand 85: 125–128PubMedGoogle Scholar
  103. 103.
    Dagkessamanskaia A, Moscoso M, Henard V, Guiral S, Overweg K, Reuter M, Martin B, Wells J, Claverys JP (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51: 1071–1086PubMedGoogle Scholar
  104. 104.
    Standish AJ, Stroeher UH, Paton JC (2005) The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proc Natl Acad Sci USA 102: 7701–7706PubMedGoogle Scholar
  105. 105.
    Ng WL, Tsui HC, Winkler ME (2005) Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 187: 7444–7459PubMedGoogle Scholar
  106. 106.
    Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG (1998) Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27: 73–83PubMedGoogle Scholar
  107. 107.
    Waite RD, Struthers JK, Dowson CG (2001) Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 42: 1223–1232PubMedGoogle Scholar
  108. 108.
    Waite RD, Penfold DW, Struthers JK, Dowson CG (2003) Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149:497–504PubMedGoogle Scholar
  109. 109.
    Bender MH, Yother J (2001) CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J Biol Chem 276: 47966–47974PubMedGoogle Scholar
  110. 110.
    Bender MH, Cartee RT, Yother J (2003) Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J Bacteriol 185: 6057–6066PubMedGoogle Scholar
  111. 111.
    Morona JK, Paton JC, Miller DC, Morona R (2000) Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in streptococcus pneumoniae. Mol Microbiol 35: 1431–1442PubMedGoogle Scholar
  112. 112.
    Morona JK, Morona R, Miller DC, Paton JC (2003) Mutational Analysis of the Carboxy-Terminal (YGX)(4) Repeat Domain of CpsD, an Autophosphorylating Tyrosine Kinase Required for Capsule Biosynthesis in Streptococcus pneumoniae. J Bacteriol 185: 3009–3019PubMedGoogle Scholar
  113. 113.
    Walport MJ (2001) Complement. First of two parts. N Engl J Med 344: 1058–1066.PubMedGoogle Scholar
  114. 114.
    Hostetter MK (2004) Interactions of Streptococcus pneumoniae with proteins of the complement pathway. In: EI Tuomanen, TJ Mitchell, DA Morrison, BG Spratt (eds) The Pneumococcus. ASM Press, Washington, DC, 201–210Google Scholar
  115. 115.
    Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci USA 99: 16969–16974PubMedGoogle Scholar
  116. 116.
    Roy S, Knox K, Segal S, Griffiths D, Moore CE, Welsh KI, Smarason A, Day NP, McPheat WL, Crook DW et al (2002) MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359: 1569–1573PubMedGoogle Scholar
  117. 117.
    Abeyta M, Hardy GG, Yother J (2003) Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 71: 218–225PubMedGoogle Scholar
  118. 118.
    Hamel J, Charland N, Pineau I, Ouellet C, Rioux S, Martin D, Brodeur BR (2004) Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun 72: 2659–2670PubMedGoogle Scholar
  119. 119.
    Angel CS, Ruzek M, Hostetter MK (1994) Degradation of C3 by Streptococcus pneumoniae. J Infect Dis 170: 600–608PubMedGoogle Scholar
  120. 120.
    Zhang Y, Masi AW, Barniak V, Mountzouros K, Hostetter MK, Green BA (2001) Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect Immun 69: 3827–3836PubMedGoogle Scholar
  121. 121.
    Mitchell TJ (2004) Pneumolysin and other virulence proteins. In: EI Tuomanen, TJ Mitchell, DA Morrison, BG Spratt (eds) The pneumococcus. ASM Press, Washington, DC, 61–74Google Scholar
  122. 122.
    Yuste J, Botto M, Paton JC, Holden DW, Brown JS (2005) Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J Immunol 175: 1813–1819PubMedGoogle Scholar
  123. 123.
    Janulczyk R, Iannelli F, Sjoholm AG, Pozzi G, Bjorck L (2000) Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275: 37257–37263PubMedGoogle Scholar
  124. 124.
    Jarva H, Hellwage J, Jokiranta TS, Lehtinen MJ, Zipfel PF, Meri S (2004) The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol 172: 3111–3118PubMedGoogle Scholar
  125. 125.
    Duthy TG, Ormsby RJ, Giannakis E, Ogunniyi AD, Stroeher UH, Paton JC, Gordon DL (2002) The human complement regulator factor H binds pneumococcal surface protein PspC via short consensus repeats 13 to 15. Infect Immun 70: 5604–5611PubMedGoogle Scholar
  126. 126.
    Iannelli F, Chiavolini D, Ricci S, Oggioni MR, Pozzi G (2004) Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun 72: 3077–3080PubMedGoogle Scholar
  127. 127.
    Tu AH, Fulgham RL, McCrory MA, Briles DE, Szalai AJ (1999) Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun 67: 4720–4724PubMedGoogle Scholar
  128. 128.
    Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y, Briles DE, Szalai AJ (2004) The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection 1. J Immunol 173: 7506–7512PubMedGoogle Scholar
  129. 129.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216PubMedGoogle Scholar
  130. 130.
    Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE (1997) C-reactive protein: structural biology, gene expression, and host defense function. Immunol Res 16: 127–136PubMedGoogle Scholar
  131. 131.
    Mold C, Rodic-Polic B, Du Clos TW (2002) Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J Immunol 168: 6375–6381PubMedGoogle Scholar
  132. 132.
    Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140: 395–407PubMedGoogle Scholar
  133. 133.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335–376PubMedGoogle Scholar
  134. 134.
    Currie AJ, Davidson DJ, Reid GS, Bharya S, MacDonald KL, Devon RS, Speert DP (2004) Primary immunodeficiency to pneumococcal infection due to a defect in Toll-like receptor signaling. J Pediatr 144: 512–518PubMedGoogle Scholar
  135. 135.
    Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299: 2076–2079PubMedGoogle Scholar
  136. 136.
    Han SH, Kim JH, Martin M, Michalek SM, Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71: 5541–5548PubMedGoogle Scholar
  137. 137.
    Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278: 15587–15594PubMedGoogle Scholar
  138. 138.
    Weber JR, Freyer D, Alexander C, Schroder NW, Reiss A, Kuster C, Pfeil D, Tuomanen EI, Schumann RR (2003) Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 19: 269–279PubMedGoogle Scholar
  139. 139.
    Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1–5PubMedGoogle Scholar
  140. 140.
    Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5: 1000–1006PubMedGoogle Scholar
  141. 141.
    Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186: 798–806PubMedGoogle Scholar
  142. 142.
    Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170: 438–444PubMedGoogle Scholar
  143. 143.
    Knapp S, Wieland CW, van’ t Veer C, Takeuchi O, Akira S, Florquin S, van der Poll T (2004) Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense 95. J Immunol 172: 3132–3138PubMedGoogle Scholar
  144. 144.
    Khan AQ, Chen Q, Wu ZQ, Paton JC, Snapper CM (2005) Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll-like receptor 2. Infect Immun 73: 298–307PubMedGoogle Scholar
  145. 145.
    van Rossum AM, Lysenko ES, Weiser JN (2005) Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 73: 7718–7726PubMedGoogle Scholar
  146. 146.
    Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771PubMedGoogle Scholar
  147. 147.
    Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M (2005) CD4+ cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci USA 102: 4848–4853PubMedGoogle Scholar
  148. 148.
    Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, Paton JC, Wessels MR, Golenbock DT, Malley R (2005) The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73: 6479–6487PubMedGoogle Scholar
  149. 149.
    Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100: 1966–1971PubMedGoogle Scholar
  150. 150.
    Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, Florquin S, van der Poll T (2004) Role of Toll-like receptor 4 in gram-positive and gramnegative pneumonia in mice. Infect Immun 72: 788–794PubMedGoogle Scholar
  151. 151.
    Benton KA, Paton JC, Briles DE (1997) The hemolytic and complement-activating properties of pneumolysin do not contribute individually to virulence in a pneumococcal bacteremia model. Microb Pathog 23: 201–209PubMedGoogle Scholar
  152. 152.
    Yamamoto M, Takeda K, Akira S (2004) TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 40: 861–868PubMedGoogle Scholar
  153. 153.
    Albiger B, Sandgren A, Katsuragi H, Meyer-Hoffert U, Beiter K, Wartha F, Hornef M, Normark S, Normark BH (2005) Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol 7: 1603–1615PubMedGoogle Scholar
  154. 154.
    Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127: 1437–1445PubMedGoogle Scholar
  155. 155.
    Branger J, Florquin S, Knapp S, Leemans JC, Pater JM, Speelman P, Golenbock DT, van der PT (2004) LPS-binding protein-deficient mice have an impaired defense against Gram-negative but not Gram-positive pneumonia. Int Immunol 16: 1605–1611PubMedGoogle Scholar
  156. 156.
    Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 90: 2744–2748PubMedGoogle Scholar
  157. 157.
    Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ (1994) CD14 is a pattern recognition receptor. Immunity 1: 509–516PubMedGoogle Scholar
  158. 158.
    Cauwels A, Wan E, Leismann M, Tuomanen E (1997) Coexistence of CD14-dependent and independent pathways for stimulation of human monocytes by gram-positive bacteria. Infect Immun 65: 3255–3260PubMedGoogle Scholar
  159. 159.
    Echchannaoui H, Frei K, Letiembre M, Strieter RM, Adachi Y, Landmann R (2005) CD14 deficiency leads to increased MIP-2 production, CXCR2 expressuttorp. sion, neutrophil transmigration, and early death in pneumococcal infection. J Leukoc Biol 78: 705–715.PubMedGoogle Scholar
  160. 160.
    Philpott DJ, Girardin SE (2004) The role of Toll-like receptors and Nod proteins in bacterial infection. Mol Immunol 41: 1099–1108PubMedGoogle Scholar
  161. 161.
    Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N, Hippenstiel S (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279: 36426–36432PubMedGoogle Scholar
  162. 162.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S et al (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4: 702–707PubMedGoogle Scholar
  163. 163.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 1584–1587PubMedGoogle Scholar
  164. 164.
    Pauleau AL, Murray PJ (2003) Role of nod2 in the response of macrophages to toll-like receptor agonists. Mol Cell Biol 23: 7531–7539PubMedGoogle Scholar
  165. 165.
    Kang YS, Kim JY, Bruening SA, Pack M, Charalambous A, Pritsker A, Moran TM, Loeffler JM, Steinman RM, Park CG (2004) The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA 101: 215–220PubMedGoogle Scholar
  166. 166.
    Lanoue A, Clatworthy MR, Smith P, Green S, Townsend MJ, Jolin HE, Smith KG, Fallon PG, McKenzie AN (2004) SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200: 1383–1393PubMedGoogle Scholar
  167. 167.
    Koppel EA, Wieland CW, van den Berg VC, Litjens M, Florquin S, van Kooyk Y, van der Poll T, Geijtenbeek TB (2005) Specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) expressed by marginal zone macrophages is essential for defense against pulmonary Streptococcus pneumoniae infection. Eur J Immunol 35: 2962–2969PubMedGoogle Scholar
  168. 168.
    Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K, Kobzik L (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200: 267–272PubMedGoogle Scholar
  169. 169.
    Um SH, Son EW, Kim BO, Moon EY, Rhee DK, Pyo S (2000) Activation of murine peritoneal macrophages by Streptococcus pneumoniae type II capsular polysaccharide: involvement of CD14-dependent pathway. Scand J Immunol 52: 39–45PubMedGoogle Scholar
  170. 170.
    Crouch E, Wright JR (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63: 521–554PubMedGoogle Scholar
  171. 171.
    Whitsett JA (2005) Surfactant proteins in innate host defense of the lung. Biol Neonate 88: 175–180PubMedGoogle Scholar
  172. 172.
    Jounblat R, Clark H, Eggleton P, Hawgood S, Andrew PW, Kadioglu A (2005) The role of surfactant protein D in the colonisation of the respiratory tract and onset of bacteraemia during pneumococcal pneumonia. Respir Res 6: 126Google Scholar
  173. 173.
    Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S, Takahashi H, Fujii N, Suzuki H, Kodama T et al (2004) Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279: 21421–21430PubMedGoogle Scholar
  174. 174.
    Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183: 3770–3783PubMedGoogle Scholar
  175. 175.
    Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, Rao AS, Madara JL (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289: 1560–1563PubMedGoogle Scholar
  176. 176.
    Tong HH, Long JP, Shannon PA, DeMaria TF (2003) Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by influenza A virus and Streptococcus pneumoniae opacity variants. Infect Immun 71: 4289–4296PubMedGoogle Scholar
  177. 177.
    Ratner AJ, Lysenko ES, Paul MN, Weiser JN (2005) Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci USA 102: 3429–3434PubMedGoogle Scholar
  178. 178.
    Lysenko ES, Ratner AJ, Nelson AL, Weiser JN (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1: e1Google Scholar
  179. 179.
    Pericone CD, Overweg K, Hermans PW, Weiser JN (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68: 3990–3997PubMedGoogle Scholar
  180. 180.
    McCullers JA, Bartmess KC (2003) Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187: 1000–1009PubMedGoogle Scholar
  181. 181.
    van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM, Florquin S, Goldman M, Jansen HM, Lutter R, van der Poll T (2004) IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol 172: 7603–7609PubMedGoogle Scholar
  182. 182.
    Tong HH, Long JP, Li D, DeMaria TF (2004) Alteration of gene expression in human middle ear epithelial cells induced by influenza A virus and its implication for the pathogenesis of otitis media. Microb Pathog 37: 193–204PubMedGoogle Scholar
  183. 183.
    Kadioglu A, Coward W, Colston MJ, Hewitt CR, Andrew PW (2004) CD4-Tlymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72: 2689–2697PubMedGoogle Scholar
  184. 184.
    Jounblat R, Kadioglu A, Mitchell TJ, Andrew PW (2003) Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect Immun 71: 1813–1819PubMedGoogle Scholar
  185. 185.
    Kadioglu A, Gingles NA, Grattan K, Kerr A, Mitchell TJ, Andrew PW (2000) Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68: 492–501PubMedGoogle Scholar
  186. 186.
    Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY (2004) TLR2 is expressed on activated T-cells as a costimulatory receptor. Proc Natl Acad Sci USA 101: 3029–3034PubMedGoogle Scholar
  187. 187.
    Austrian R (1981) Pneumococcal pneumonia and pneumococcal vaccine. Mt Sinai J Med 48: 532–538PubMedGoogle Scholar
  188. 188.
    Casal J, Tarrago D (2003) Immunity to Streptococcus pneumoniae: Factors affecting production and efficacy. Curr Opin Infect Dis 16: 219–224PubMedGoogle Scholar
  189. 189.
    Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G et al (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19: 187–195PubMedGoogle Scholar
  190. 190.
    Balachandran P, Brooks-Walter A, Virolainen-Julkunen A, Hollingshead SK, Briles DE (2002) Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect Immun 70: 2526–2534PubMedGoogle Scholar
  191. 191.
    Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, Ferguson LM, Nahm MH, Nabors GS (2000) Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis 182: 1694–1701PubMedGoogle Scholar
  192. 192.
    McDaniel LS, Waltman WD, 2nd, Gray B, Briles DE (1987) A protective monoclonal antibody that reacts with a novel antigen of pneumococcal teichoic acid. Microb Pathog 3: 249–260PubMedGoogle Scholar
  193. 193.
    Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC (2000) Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 68: 3028–3033PubMedGoogle Scholar
  194. 194.
    Overweg K, Kerr A, Sluijter M, Jackson MH, Mitchell TJ, de Jong AP, de Groot R, Hermans PW (2000) The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 68: 4180–4188PubMedGoogle Scholar
  195. 195.
    Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E et al (2001) Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 69: 1593–1598PubMedGoogle Scholar
  196. 196.
    McCool TL, Cate TR, Tuomanen EI, Adrian P, Mitchell TJ, Weiser JN (2003) Serum immunoglobulin G response to candidate vaccine antigens during experimental human pneumococcal colonization. Infect Immun 71: 5724–5732PubMedGoogle Scholar
  197. 197.
    Paton JC (1998) Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends Microbiol 6: 85–87; discussion 87-88PubMedGoogle Scholar
  198. 198.
    Morrison KE, Lake D, Crook J, Carlone GM, Ades E, Facklam R, Sampson JS (2000) Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 38: 434–437PubMedGoogle Scholar
  199. 199.
    McCool TL, Cate TR, Moy G, Weiser JN (2002) The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195: 359–365PubMedGoogle Scholar
  200. 200.
    Obaro SK, Adegbola RA, Tharpe JA, Ades EW, McAdam KP, Carlone G, Sampson JS (2000) Pneumococcal surface adhesin A antibody concentration in serum and nasopharyngeal carriage of Streptococcus pneumoniae in young African infants. Vaccine 19: 411–412PubMedGoogle Scholar
  201. 201.
    Rapola S, Jantti V, Haikala R, Syrjanen R, Carlone GM, Sampson JS, Briles DE, Paton JC, Takala AK, Kilpi TM et al (2000) Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J Infect Dis 182: 1146–1152PubMedGoogle Scholar
  202. 202.
    Brooks-Walter A, Briles DE, Hollingshead SK (1999) The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67: 6533–6542PubMedGoogle Scholar
  203. 203.
    Hollingshead SK, Becker R, Briles DE (2000) Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 68: 5889–5900PubMedGoogle Scholar
  204. 204.
    Zhang Q, Bernatoniene J, Bagrade L, Pollard AJ, Mitchell TJ, Paton JC, Finn A (2006) Serum and mucosal antibody responses to pneumococcal protein antigens in children: relationships with carriage status. Eur J Immunol 36: 46–57PubMedGoogle Scholar
  205. 205.
    Adrian PV, Bogaert D, Oprins M, Rapola S, Lahdenkari M, Kilpi T, de Groot R, Kayhty H, Hermans PW (2004) Development of antibodies against pneumococcal proteins alpha-enolase, immunoglobulin A1 protease, streptococcal lipoprotein rotamase A, and putative proteinase maturation protein A in relation to pneumococcal carriage and Otitis Media. Vaccine 22: 2737–2742PubMedGoogle Scholar
  206. 206.
    Rogers PD, Thornton J, Barker KS, McDaniel DO, Sacks GS, Swiatlo E, McDaniel LS (2003) Pneumolysin-dependent and-independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 71: 2087–2094PubMedGoogle Scholar
  207. 207.
    Chen A, Li HS, Hebda PA, Zeevi A, Swarts JD (2005) Gene expression profiles of early pneumococcal otitis media in the rat. Int J Pediatr Otorhinolaryngol 69: 1383–1393PubMedGoogle Scholar
  208. 208.
    Nelson AL, Barasch JM, Bunte RM, Weiser JN (2005) Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7: 1404–1417PubMedGoogle Scholar
  209. 209.
    Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152: 295–303PubMedGoogle Scholar
  210. 210.
    Paterson GK, Mitchell TJ (2006) Innate immunity and the pneumococcus. Microbiology 152: 285–293PubMedGoogle Scholar
  211. 211.
    Lau GW, Haataja S, Lonetto M, Kensit SE, Marra A, Bryant AP, McDevitt D, Morrison DA, Holden D (2001) A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40: 555–571PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Sven Hammerschmidt
    • 1
  • Simone Bergmann
    • 1
  • Gavin K. Paterson
    • 2
  • Timothy J. Mitchell
    • 2
  1. 1.Research Center for Infectious DiseasesUniversity of WürzburgWürzburgGermany
  2. 2.Division of Infection and Immunity Institute of Biomedical and Life ScienceJoseph Black Building, University of GlasgowUK

Personalised recommendations