Skip to main content

Environmental resistance, disinfection, and sterilization of poxviruses

  • Chapter
Poxviruses

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

The virion of a poxvirus is an enveloped particle that differs significantly from other enveloped viruses. Apart from DNA, proteins and phospholipids, poxvirus virions also contain carbohydrates. They show a high environmental stability and remain contagious over a period of several months in an ambient environment. Poxviruses show an extraordinary high resistance to drying, which is further enhanced by materials in which they are released into the environment (e.g., dermal crusts, serum, blood residues and other excretions). Dried Vaccinia virus can be stored at 4°C over a period of more than 35 weeks without any loss of infectivity. Frozen in buffer at -20°C, a titer reduction of only 3 log-steps is observed within 15 years. In general, virus isolated from patients and/or environment is more resistant to environmental conditions than virus deriving from cell cultures. In addition, poxviruses show a high stability towards different pH values. Due to their low lipid content, they are less sensitive to organic solvents/disinfectants compared to other enveloped viruses. This is the reason for the considerably higher resistance of poxviruses to diethylether in comparison to other enveloped viruses. Despite all of these aspects, poxviruses are highly sensitive to all common approved disinfection regimens. Cell-bound poxvirus may show a higher stability than cell-free virus. This phenomenon is not observed if quaternary ammonium compounds are used. Due to the possible renewed importance of smallpox, e.g., in case of abuse in biological warfare, but also because of the impact of poxviruses in veterinary medicine, representatives of the poxvirus family have been chosen to test the efficacy of common disinfectants. The common sterilization procedures - thermal, chemical, an/or radiation - are usually effective against poxviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinborn A, Essbauer S, Marsch WC (2003) Human cowpox/catpox infection, a potentially unrecognized disease [Kuh-/Katzenpocken-Infektionen beim Menschen. Ein potenziell verkanntes Krankheitsbild]. Dtsch Med Wochenschr 128: 607–610

    CAS  Google Scholar 

  2. Committee on the Assessment of Future Needs for Variola Virus (1999) Epidemiology: Assessment of Future Scientific Needs for Live Variola Virus. Institute of Medicine, National Academic Press, Washington D.C., 33–35

    Google Scholar 

  3. Haas R, Vivell O (1965) Human Viral and Rickettsial Infections [Virus-und Rickettsieninfektionen des Menschen]. JF Lehmanns, Munich, Germany

    Google Scholar 

  4. Tidona CA, Darai G (eds) (2001) The Springer Index of Viruses. Springer, Berlin, 863–921

    Google Scholar 

  5. Fenner F (1996) Poxviruses. In: BN Fields, DM Knipe, PM Howley, RM Chanock, P Monath, B Roizman, DE Griffin, RA Lamb, MA Martin, SE Straus (eds): Fields Virology, 3 edn. Lippincott/Raven, Philadelphia, 2673–2702

    Google Scholar 

  6. Mahnel H (1987) Experimental results on the stability of poxviruses under laboratory and environmental conditions [Experimentelle Ergebnisse über die Stabilität von Pockenviren unter Labor-und Umweltbedingungen]. J Vet Med B 34: 449–464

    Article  CAS  Google Scholar 

  7. Downie AW, Meiklejohn M, St Vincent L, Rao AR, Sundara Babu BV, Kempe CH (1965) The recovery of smallpox virus from patients and their environment in a smallpox hospital. Bull WHO 33: 615–622

    PubMed  CAS  Google Scholar 

  8. Sidwell RW, Dixon GJ, McNeil E (1966) Quantitative studies on fabrics as disseminators of viruses. I. Persistence of vaccinia virus on cotton and wool fabrics. Appl Microbiol 14: 55–59

    CAS  Google Scholar 

  9. Sidwell RW, Dixon GJ, McNeil E (1967) Quantitative studies on fabrics as disseminators of viruses. III. Persistence of vaccinia virus on fabrics impregnated with a virucidal agent. Appl Microbiol 15: 921–927

    CAS  Google Scholar 

  10. Noda M, Matsuda S, Kobayashi M (2000) Virucidal activity of disinfectants. Influence of the serum protein upon the virucidal activity of disinfectants. Kasenshogaku Zasshi 74: 664–669

    CAS  Google Scholar 

  11. Weber DJ, Barbee SL, Sobsey MD, Rutala WA (1999) The effect of blood on the antiviral activity of sodium hypochlorite, a phenolic, and a quaternary ammonium compound. Control Hosp Epidemiol 20: 821–827

    Article  CAS  Google Scholar 

  12. Kraatz G (1984) Comparative investigations on the infectious potential of free and cell-bound orthopoxviruses [Vergleichende Untersuchungen über die Tenazitaet freier und zellgebundener Orthopockenviren]. PhD Thesis, LMU Munich, Germany

    Google Scholar 

  13. Harper GJ (1961) Airborne micro-organisms: Survival tests with four viruses. N Engl J Med 339: 556–559

    Google Scholar 

  14. State Act (1850) Report of a General Plan for the Promotion of Public and Personal Health. State Archive of Massachusetts, Boston, 326–332

    Google Scholar 

  15. Greimer K (1922) Handbook for Practicising Disinfectors [Handbuch des Praktischen Desinfektors], 2 edn. Steinkopff, Dresden/Leipzig, Germany

    Google Scholar 

  16. Rheinbaben F v, Wolff MH (2002) Handbook of Antiviral Disinfectants [Handbuch der viruswirksamen Desinfektion]. Springer-Verlag, Berlin

    Google Scholar 

  17. Wallhäußer KH (1995) Practice of Sterilization, Disinfection, Conservation [Praxis der Sterilisation, Desinfektion, Konservierung], 5 edn. Thieme, Stuttgart

    Google Scholar 

  18. Bellamy K (1995) A review of the test methods used to establish virucidal activity. J Hosp Infect S 30: 389–396

    Article  Google Scholar 

  19. Rolle M, Mayr A (2002) Medical Microbiology, Infectiology and Epidemiology of Infectious Disease [Medizinische Mikrobiologie, Infektions-und Seuchenlehre], 7 edn. Enke, Stuttgart

    Google Scholar 

  20. Pontier G, Chaumont F (1954) Action of different antiseptics on Shope fibroma virus. Ann Inst Past 86: 532–534

    CAS  Google Scholar 

  21. Tanabe I, Hotta S (1976) Effect of disinfectants on variola virus in cell culture. Appl Environ Microbiol 32: 209–212

    PubMed  CAS  Google Scholar 

  22. Joklik WK (1962) The purification of four strains of poxvirus. Virology 18: 9–12

    Article  PubMed  CAS  Google Scholar 

  23. Turner GS, Squires EJ, Murray HGS (1970) Inactivated smallpox vaccine. A comparison of inactivation methods. J Hyg 68: 197–202

    Article  CAS  Google Scholar 

  24. Pöhn HP, Heicken K (1967) Evaluation of disinfectants on their virucidal properties against viruses of the pox-vaccinia-group De[Prüfung von Desinfektionsmitteln auf Viruzidie gegenüber Virusarten der Pocken-Vaccine-Gruppe]. Zentralbl Bakteriol I [Orig] 202: 172–183

    Google Scholar 

  25. Ferier A, Garin D, Crane JM (2004) Rapid inactivation of vaccinia virus in suspension and died on surfaces. J Hosp Infect 57: 73–79

    Article  Google Scholar 

  26. Baxby D (1988) Human poxvirus infection after the eradication of smallpox. Epidemiol Infect 100: 321–334

    Article  PubMed  CAS  Google Scholar 

  27. Henderson DS, Inglesby TV, Bartlett JG, Ascher MS, Eitzen E, Jahrling PB, Hauer J, Layton M, McDade J, Osterholm MT et al (1999) Smallpox as a biological weapon: Medical and public health management. Working Group on Civilian Biodefense. JAMA 281: 2127–2137

    Article  PubMed  CAS  Google Scholar 

  28. Cohen J (2001) Bioterrorism. Smallpox vaccinations: How much protection remains? Science 294: 985–987

    Article  PubMed  CAS  Google Scholar 

  29. Breman JG, Henderson DA (1998) Poxvirus dilemmas-monkeypox, smallpox, and biologic terrorism. N Engl J Med 339: 556–559

    Article  PubMed  CAS  Google Scholar 

  30. German Society of Veterinary Medicine (ed) (1984) Guidelines for the Evaluation of Chemical Disinfectants [Richtlinien für die Prüfung chemischer Desinfektionsmittel]. Deutsche Veterinärmedizinische Gesellschaft, Gießen

    Google Scholar 

  31. German Federal Health Office (BGA) and German Society for the Control of Viral Diseases (DVV) (1990) Guidelines of German Federal Health Office and German Association for the Control of Virus Diseases for testing the effectiveness of chemical disinfectants against viruses. Zentralbl Hyg Umweltmed 189: 554–562

    Google Scholar 

  32. DVV, RKI (2005) Guideline of the German Society for the Control of Virus Diseases and the Robert-Koch-Institute on the evaluation of chemical disinfectants against viruses for purposes within human medicine, effective date: 15_June 2005 [Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) e.V. und des Robert Koch-Instituts (RKI) zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin, Fassung vom 15. Juni 2005]. Hyg Med 30: 460–467

    Google Scholar 

  33. Association Française de Normalisation, AFNOR (French Organization for Normation, AFNOR) (1986) Liquid and Water-Soluble Antiseptics and Disinfectants. Determination of the Virucidal Activity within Vertebrates [Antiseptiques et désinfectants utilisé à l’état liquide, miscibles à l’eau. Détermination de l’activité virucide vis-à-vis des virus des vertébrés]. T72–180, March 1986

    Google Scholar 

  34. Garrigue G (1984) In vitro virucidal activity of antiseptics and disinfectants. I. Draft of the AFNOR virucidal activity standard. Pathol Biol Paris 32: 640–642

    CAS  Google Scholar 

  35. Butcher W, Ulaeto D (2005) Information to: Guide F: Environmental Control of Smallpox Virus/Smallpox Response Plan. March 20 2003. Environmental Protection Agency, Washington D.C., 1–10

    Google Scholar 

  36. Kaplan C (1958) The heat inactivation of vaccinia virus. J Gen Microbiol 18: 58–61

    PubMed  CAS  Google Scholar 

  37. Lea DE, Salman MH (1942) The inactivation of vaccinia virus by radiations. Br J Exper Pathol 23: 27–37

    Google Scholar 

  38. Dawson FW, Jenson RJ, Hoffman RK (1960) Virucidal activity of beta propiolactone vapor. II. Effect on etiological agent of smallpox, yellow fever, psittacosis and Q fever. Appl Microbiol 8: 39–41

    CAS  Google Scholar 

  39. Angeloff S, Panajotoff P, Manolova N, Nikoloff PN (1956) Efficacy of selected chemical substances against vaccinia virus and sheep-pox virus [Wirkung einiger chemischer Mittel auf das Vakzinevirus und auf das Virus der Schafpocken]. Arch Exp Vet Med 10: 365–369

    CAS  Google Scholar 

  40. Bingel KF, Hermann C (1966) Experimental disinfection against vaccinia virus as rationale for the clinical application in case of smallpox [Die experimentelle Desinfektion des Vakziniavirus als Grundlage für die klinische Pockendesinfektion]. Med Welt 17: 76–82

    Google Scholar 

  41. Großgebauer K (1967) Hand disinfection in case of hand-contamination with poxviruses [Zur Desinfektion der mit Pockenviren kontaminierten Hand]. Gesundheitswes Desinfekt 59: 1–4

    Google Scholar 

  42. Gildemeister E, Hailer E, Heuer G (1930) Efficacy of disinfectants against vaccinia virus [Das Verhalten des Vakzinevirus gegenüber keimtötenden Stoffen]. Arch Hyg Bakteriol 103: 132–135

    Google Scholar 

  43. Kewitsch A, Weuffen W (1970) Efficacy of chemical disinfectants against influenza-, vaccinia-, and poliomyelitis virus [Wirkung chemischer Desinfektionsmittel gegenüber Influenza-, Vakzinia und Poliomyelitisvirus]. Z Ges Hyg 16: 687–691

    CAS  Google Scholar 

  44. Schümann KO, Großgebauer G (1977) Evaluation of the efficacy of disinfectants against vaccinia virus in crusts deriving from rabbits and on the hand [Versuche zur Desinfektion von Vakziniavirus in Kaninchenborken bzw. an der Hand]. Zentralbl Bakteriol Hyg I [Orig B] 164: 45–63

    Google Scholar 

  45. Dunham WB, McNeal WJ (1943) Inactivation of vaccinia virus by mild antiseptics. J Lab Clin Med 28: 947–953

    Google Scholar 

  46. Kaplan C (1959) Inactivation of vaccinia virus by mercury. Nature 184: 1074–1078

    Article  PubMed  Google Scholar 

  47. Mahnel H, Herlyn, M (1976) Stability of Teschen-, HCC-, ND-and vaccinia-virus against 5 disinfectants [Stabilität von Teschen-, HCC-, ND-und Vacciniavirus gegenüber 5Desinfektionswirkstoffen]. Zbl Vet Med B 23: 403–411

    CAS  Google Scholar 

  48. Micklem LR, Kaplan C (1958) The influence of thiomersolate on vaccinia virus. Virology 6: 775–777

    Article  PubMed  CAS  Google Scholar 

  49. Sidwell RW, Westbrook L, Dixon GJ, Happich WF (1970) Potentially infectious agents associated with shearling bedpads. I. Effect of laundering with detergent-disinfectant combinations on poliovirus and vaccinia viruses. Appl Microbiol 19: 53–59

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rheinbaben, F.v., Gebel, J., Exner, M., Schmidt, A. (2007). Environmental resistance, disinfection, and sterilization of poxviruses. In: Mercer, A.A., Schmidt, A., Weber, O. (eds) Poxviruses. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7557-7_19

Download citation

Publish with us

Policies and ethics