Advances in stem cell research: use of stem cells in animal models of muscular dystrophy

  • Antonio Musarò
  • Nadia Rosenthal
Part of the Progress in Inflammation Research book series (PIR)


Stem Cell Muscular Dystrophy Satellite Cell Duchenne Muscular Dystrophy Adult Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238PubMedCrossRefGoogle Scholar
  2. 2.
    Cohn RD, Campbell, KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23: 1456–1471PubMedCrossRefGoogle Scholar
  3. 3.
    Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12: 349–361PubMedCrossRefGoogle Scholar
  4. 4.
    Laval SH, Bushby KM (2004) Limb-girdle muscular dystrophies — from genetics to molecular pathology. Neuropathol Appl Neurobiol 30: 91–105PubMedCrossRefGoogle Scholar
  5. 5.
    Voit T (1998) Congenital muscular dystrophies: 1997 update. Brain Dev 20: 65–74PubMedCrossRefGoogle Scholar
  6. 6.
    Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet 17: 318–323PubMedCrossRefGoogle Scholar
  7. 7.
    Berridge MJ, Lipp P, Bootman, MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11–21PubMedCrossRefGoogle Scholar
  8. 8.
    Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80: 1215–1265PubMedGoogle Scholar
  9. 9.
    Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97: 4950–4955PubMedCrossRefGoogle Scholar
  10. 10.
    Sampaolesi M, Yoshida T, Iwata Y, Hanada H, Shigekawa M (2001) Stretch-induced cell damage in sarcoglycan-deficient myotubes. Pflugers Arch 442: 161–170PubMedCrossRefGoogle Scholar
  11. 11.
    Hassoni AA, Cullen MJ (1999) Calcium homeostasis and ultrastructural studies in a patient with limb girdle muscular dystrophy type 2C. Neuropathol Appl Neurobiol 25: 244–253PubMedCrossRefGoogle Scholar
  12. 12.
    Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7: 525–530PubMedCrossRefGoogle Scholar
  13. 13.
    Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factorregulated channel. J Cell Biol 161: 957–967PubMedCrossRefGoogle Scholar
  14. 14.
    Gosselin LE, McCormick KM (2004) Targeting the immune system to improve ventilatory function in muscular dystrophy. Med Sci Sports Exerc 36: 44–51PubMedCrossRefGoogle Scholar
  15. 15.
    Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11: 263–272PubMedCrossRefGoogle Scholar
  16. 16.
    Chen YW, Zhao P, Borup R, Hoffman EP (2000) Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151: 1321–1336PubMedCrossRefGoogle Scholar
  17. 17.
    McDouall RM, Dunn MJ, Dubowitz V (1990) Nature of the mononuclear infiltrate and the mechanism of muscle damage in juvenile dermatomyositis and Duchenne muscular dystrophy. J Neurol Sci 99: 199–217PubMedCrossRefGoogle Scholar
  18. 18.
    Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, Durbeej M, Lebakken CS, Ettinger AJ, van der Meulen et al (1998) Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 142: 1461–1471PubMedCrossRefGoogle Scholar
  19. 19.
    Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ, Hoffman EP (1998) Homozygous alpha-sarcoglycan mutation in two siblings: one asymptomatic and one steroid-responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve 21: 769–775PubMedCrossRefGoogle Scholar
  20. 20.
    Manzur AY, Kuntzer T, Pike M, Swan A (2004) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2: CD003725PubMedGoogle Scholar
  21. 21.
    Connolly AM, Pestronk A, Mehta S, Al-Lozi M (1998) Primary alpha-sarcoglycan deficiency responsive to immunosuppression over three years. Muscle Nerve 21: 1549–1553PubMedCrossRefGoogle Scholar
  22. 22.
    Horber FF, Haymond MW (1990) Human growth hormone prevents the protein catabolic side effects of prednisone in humans. J Clin Invest 86: 265–272PubMedCrossRefGoogle Scholar
  23. 23.
    Buttgereit F, Burmester GR, Lipworth BJ (2005) Optimised glucocorticoid therapy: the sharpening of an old spear. Lancet 365: 801–803PubMedGoogle Scholar
  24. 24.
    Carnwath JW, Shotton DM (1987) Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles. J Neurol Sci 80: 39–54PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper BJ (1989) Animal models for Duchenne and Becker muscular dystrophy. Br Med Bull 45: 703–718PubMedGoogle Scholar
  26. 26.
    Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) Genes Dev 10: 1173–1183PubMedCrossRefGoogle Scholar
  27. 27.
    Im WB, Phelps SF, Copen EH, Adams EG, Slightom JL, Chamberlain JS (1996) Differential expression of dystrophin isoforms in strains of mdx mice with different mutations. Hum Mol Genet 5: 1149–1153PubMedCrossRefGoogle Scholar
  28. 28.
    Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32: 128–131PubMedCrossRefGoogle Scholar
  29. 29.
    Megeney LA, Kablar B, Perry RL, Ying C, May L, Rudnicki MA (1996) Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci USA 96: 220–225Google Scholar
  30. 30.
    Inanlou MR, Dhillon GS, Belliveau AC, Reid GA, Ying C, Rudnicki MA, Kablar B (2003) A significant reduction of the diaphragm in mdx:MyoD-/-(9th) embryos suggests a role for MyoD in the diaphragm development. Dev Biol 261: 324–336PubMedCrossRefGoogle Scholar
  31. 31.
    Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99: 2745–2751PubMedCrossRefGoogle Scholar
  32. 32.
    Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4+) and cytotoxic (CD8+) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98: 235–243PubMedCrossRefGoogle Scholar
  33. 33.
    Spencer MJ, Tidball JG (2001) Do immune cells promote the pathology of dystrophindeficient myopathies? Neuromuscul Disord 11: 556–564PubMedCrossRefGoogle Scholar
  34. 34.
    Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155: 123–131PubMedCrossRefGoogle Scholar
  35. 35.
    De Luca A, Nico B, Liantonio A, Didonna MP, Fraysse B, Pierno S, Burdi R, Mangieri D, Rolland JF, Camerino C et al (2005) A multidisciplinary evaluation of the effectiveness of cyclosporine a in dystrophic mdx mice. Am J Pathol 166: 477–489PubMedGoogle Scholar
  36. 36.
    Spencer MJ, Marino MW, Winckler WM (2000) Altered pathological progression of diaphragm and quadriceps muscle in TNF-deficient, dystrophin-deficient mice. Neuromuscul Disord 10: 612–619PubMedCrossRefGoogle Scholar
  37. 37.
    Grounds MD, Torrisi J (2004) Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18: 676–682PubMedCrossRefGoogle Scholar
  38. 38.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493–495PubMedCrossRefGoogle Scholar
  39. 39.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91: 534–551PubMedGoogle Scholar
  40. 40.
    Johnson SE, Allen RE (1993) Proliferating cell nuclear antigen (PCNA) is expressed in activated rat skeletal muscle satellite cells. J Cell Physiol 154: 39–43PubMedCrossRefGoogle Scholar
  41. 41.
    Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195–200PubMedCrossRefGoogle Scholar
  42. 42.
    Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175: 84–94PubMedCrossRefGoogle Scholar
  43. 43.
    Schultz, E, Lipton, BH (1982) Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev 20: 377–383PubMedCrossRefGoogle Scholar
  44. 44.
    Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302: 1575–1577PubMedCrossRefGoogle Scholar
  45. 45.
    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433: 760–764PubMedCrossRefGoogle Scholar
  46. 46.
    Musarò A, Rosenthal N (2002) The role of local insulin-like growth factor-1 isoforms in the pathophysiology of skeletal muscle. Current Genomics 3: 149–162CrossRefGoogle Scholar
  47. 47.
    Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157: 137–148PubMedCrossRefGoogle Scholar
  48. 48.
    Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N, Musaro A (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168: 193–199PubMedCrossRefGoogle Scholar
  49. 49.
    Reimann J, Irintchev A, Wernig A (2000) Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromuscul Disord 10: 276–282PubMedCrossRefGoogle Scholar
  50. 50.
    Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore, SA, Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR et al (2002) Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110: 639–648PubMedCrossRefGoogle Scholar
  51. 51.
    Grounds MD (1996) Commentary on the present state of knowledge for myoblast transfer therapy. Cell Transplant 5: 431–433PubMedCrossRefGoogle Scholar
  52. 52.
    Grounds MD (2000) Myoblast transfer therapy in the new millennium. Cell Transplant 9: 485–487PubMedGoogle Scholar
  53. 53.
    Grounds MD, White JD, Rosenthal N, Bogoyevitch MA (2002) The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50: 589–610PubMedGoogle Scholar
  54. 54.
    Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144: 1113–1122PubMedCrossRefGoogle Scholar
  55. 55.
    Smythe GM, Hodgetts SI, Grounds MD (2001) Problems and solutions in myoblast transfer therapy. J Cell Mol Med 5: 33–47PubMedCrossRefGoogle Scholar
  56. 56.
    Guerette B, Skuk D, Celestin F, Huard C, Tardif F, Asselin I, Roy B, Goulet M, Roy R, Entman M et al (1997) Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol 159: 2522–2531PubMedGoogle Scholar
  57. 57.
    Hodgetts SI, Grounds MD (2003) Irradiation of dystrophic host tissue prior to myoblast transfer therapy enhances initial (but not long-term) survival of donor myoblasts. J Cell Sci 116: 4131–4146PubMedCrossRefGoogle Scholar
  58. 58.
    Guerette B, Wood K, Roy R, Tremblay JP (1997) Efficient myoblast transplantation in mice immunosuppressed with monoclonal antibodies and CTLA4 Ig. Transplant Proc 29: 1932–1934PubMedCrossRefGoogle Scholar
  59. 59.
    Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD (2000) Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant 9: 489–502PubMedGoogle Scholar
  60. 60.
    Kinoshita I, Vilquin JT, Guerette B, Asselin I, Roy R, Lille S, Tremblay JP (1994) Immunosuppression with FK 506 insures good success of myoblast transplantation in mdx mice. Transplant Proc 26: 3518PubMedGoogle Scholar
  61. 61.
    Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155PubMedCrossRefGoogle Scholar
  62. 62.
    Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105: 829–841PubMedCrossRefGoogle Scholar
  63. 63.
    Rosenthal N (2003) Prometheus’s vulture and the stem-cell promise. N Engl J Med 349:267–274PubMedCrossRefGoogle Scholar
  64. 64.
    Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85: 635–678PubMedCrossRefGoogle Scholar
  65. 65.
    Blackburn E (2004) Bioethics and the political distortion of biomedical science. N Engl J Med 350: 1379–1380PubMedCrossRefGoogle Scholar
  66. 66.
    Hochedlinger K, Jaenisch R (2003) Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349: 275–286PubMedCrossRefGoogle Scholar
  67. 67.
    Uchida N, Weissman IL (1992) Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin-Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med 175: 175–184PubMedCrossRefGoogle Scholar
  68. 68.
    Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1: 661–673PubMedCrossRefGoogle Scholar
  69. 69.
    Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245PubMedCrossRefGoogle Scholar
  70. 70.
    Poulsom R, Alison MR, Forbes SJ, Wright NA ((2002) Adult stem cell plasticity. J Pathol 197: 441–456PubMedCrossRefGoogle Scholar
  71. 71.
    Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102: 3483–3493PubMedCrossRefGoogle Scholar
  72. 72.
    Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22: 487–500PubMedCrossRefGoogle Scholar
  73. 73.
    Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30: 973–981PubMedCrossRefGoogle Scholar
  74. 74.
    LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589–601PubMedCrossRefGoogle Scholar
  75. 75.
    Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9: 1520–1527PubMedCrossRefGoogle Scholar
  76. 76.
    Morgan JE, Gross JG, Pagel CN, Beauchamp JR, Fassati A, Thrasher AJ, Di Santo JP, Fisher IB, Shiwen X, Abraham DJ et al (2002) Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol 157: 693–702PubMedCrossRefGoogle Scholar
  77. 77.
    Ferrari G, Stornaiuolo A, Mavilio F (2001) Failure to correct murine muscular dystrophy. Nature 411: 1014–1015PubMedCrossRefGoogle Scholar
  78. 78.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183: 1797–1806PubMedCrossRefGoogle Scholar
  79. 79.
    Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159: 123–134PubMedCrossRefGoogle Scholar
  80. 80.
    Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852PubMedCrossRefGoogle Scholar
  81. 81.
    McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99: 1341–1346PubMedCrossRefGoogle Scholar
  82. 82.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279: 1528–1530PubMedCrossRefGoogle Scholar
  83. 83.
    Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394PubMedGoogle Scholar
  84. 84.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrowderived stem cell. Cell 105: 369–377PubMedCrossRefGoogle Scholar
  85. 85.
    Cossu G, Mavilio F (2000) Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105: 1669–1674PubMedCrossRefGoogle Scholar
  86. 86.
    Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M, Ma A, McNally EM (2004) Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 114:1577–1585PubMedCrossRefGoogle Scholar
  87. 87.
    Cossu G (2004) Fusion of bone marrow-derived stem cells with striated muscle may not be sufficient to activate muscle genes. J Clin Invest 114: 1540–1543PubMedCrossRefGoogle Scholar
  88. 88.
    Cossu G, Bianco P (2003) Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13: 537–542PubMedCrossRefGoogle Scholar
  89. 89.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP et al (2003) Cell therapy of alphasarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301: 487–492PubMedCrossRefGoogle Scholar
  90. 90.
    Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288: R345–353PubMedGoogle Scholar
  91. 91.
    Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95: 15603–15607PubMedCrossRefGoogle Scholar
  92. 92.
    Musaro A, Giacinti C, Borsellino G, Dobrowolny G, Pelosi L, Cairns L, Ottolenghi S, Cossu G, Bernardi G, Battistini L et al (2004) Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA 101:1206–1210PubMedCrossRefGoogle Scholar
  93. 93.
    Musarò A, Rosenthal N (2003) Attenuating muscle wasting: cell and gene therapy approaches. Current Genomics 4: 575–585CrossRefGoogle Scholar
  94. 94.
    Wurmser AE, Gage FH (2002) Stem cells: cell fusion causes confusion. Nature 416:485–487PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Antonio Musarò
    • 1
  • Nadia Rosenthal
    • 2
  1. 1.Department of Histology and Medical Embryology, CE-BEMM and Interuniversity Institute of MyologyUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Mouse Biology Unit, MonterotondoEuropean Molecular Biology LaboratoryRomeItaly

Personalised recommendations