The Fundamental Solution for a Second Order Weakly Hyperbolic Cauchy problem

  • Alessia Ascanelli
  • Massimo Cicognani
Conference paper
Part of the Trends in Mathematics book series (TM)


We construct the fundamental solution for a weakly hyperbolic operator satisfying an intermediate condition between effective hyperbolicity and the Levi condition. By the fundamental solution, we obtain the well-posedness in C of the Cauchy problem.


Weakly Hyperbolic Equations Cauchy Problem 

Mathematics Subject Classification (2000)

35L80 35L15 


  1. [1]
    R. Agliardi and M. Cicognani, The Cauchy problem for a class of Kovalevskian pseudo-differential operators. Proc. Amer. Math. Soc. 132 (2004), 841–845.CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Ascanelli and M. Cicognani, Energy estimate and fundamental solution for degenerate hyperbolic Cauchy problems. J.Differential Equations 217 (2005) n. 2, 305–340.CrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Cicognani, The Cauchy problem for strictly hyperbolic operators with nonabsolutely continuous coefficients. Tsukuba J. Math. 27 (2003), 1–12.MathSciNetGoogle Scholar
  4. [4]
    M. Cicognani, Coefficients with unbounded derivatives in hyperbolic equations. Math. Nachr. 277 (2004), 1–16.MathSciNetGoogle Scholar
  5. [5]
    F. Colombini, H. Ishida and N. Orrù, On the Cauchy problem for finitely degenerate hyperbolic equations of second order.Ark. Mat. 38 (2000), 223–230.CrossRefMathSciNetGoogle Scholar
  6. [6]
    F. Colombini, E. Jannelli and S. Spagnolo, Well-posedness in Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on Time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 291–312.MathSciNetGoogle Scholar
  7. [7]
    F. Colombini and T. Nishitani, On finitely degenerate hyperbolic operators of second order. Osaka J. Math. 41 (2004) 4, 933–947.MathSciNetGoogle Scholar
  8. [8]
    V. Ja. Ivriǐ, Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity (Russian). Sibirsk. Mat. Ž. 17 (1976), 1256–1270.MathSciNetGoogle Scholar
  9. [9]
    H. Kumano-Go, Pseudo-differential operators, The MIT Press, Cambridge, Massachusetts, and London, England, 1981.Google Scholar
  10. [10]
    T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order. Comm. Partial Differential Equations 5 (1980), 1273–1296.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Alessia Ascanelli
    • 1
  • Massimo Cicognani
    • 2
    • 3
  1. 1.Dipartimento di MatematicaUniversità di FerraraFerraraItaly
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  3. 3.Facoltà di Ingegneria IICesenaItaly

Personalised recommendations