Skip to main content

Methods, applications and concepts of metabolite profiling: Secondary metabolism

  • Chapter

Part of the Experientia Supplementum book series (EXS,volume 97)

Abstract

Plants manufacture a vast array of secondary metabolites/natural products for protection against biotic or abiotic environmental challenges. These compounds provide increased fitness due to their antimicrobial, anti-herbivory, and/or alleopathic activities. Secondary metabolites also serve fundamental roles as key signaling compounds in mutualistic interactions and plant development. Metabolic profiling and integrated functional genomics are advancing the understanding of these intriguing biosynthetic pathways and the response of these pathways to environmental challenges. This chapter provides an overview of the basic methods, select applications, and future directions of metabolic profiling of secondary metabolism. The emphasis of the application section includes the combination of primary and secondary metabolic profiling. The future directions section describes the need for increased chromatographic and mass resolution, as well as the inevitable need and benefit of spatially and temporally resolved metabolic profiling.

Keywords

  • High Performance Liquid Chromatography
  • Secondary Metabolism
  • Peak Capacity
  • Aristolochic Acid
  • Triterpene Saponin

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-7439-6_9
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-7439-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant Physiol 135: 828–839

    PubMed  CrossRef  CAS  Google Scholar 

  2. Keller N, Turner G, Bennett J (2005) Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Microbiol 3: 937–947

    PubMed  CrossRef  CAS  Google Scholar 

  3. Muller WEG, Schroder HC, Wiens M, Perovic-Ottstadt S, Batel R, Muller IM (2004) Traditional and modern biomedical prospecting: Part II — The benefits: approaches for a sustainable exploitation of biodiversity (secondary metabolites and biomaterials from sponges). Evid Based Complement Altern Med 1: 133–144

    CrossRef  Google Scholar 

  4. Wink ME (1999) Biochemistry of plant secondary metabolism, vol. 2, CRC Press, Boca Raton

    Google Scholar 

  5. Dixon RA (2001) Natural products and disease resistance. Nature 411: 843–847

    PubMed  CrossRef  CAS  Google Scholar 

  6. Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131: 878–885

    PubMed  CrossRef  CAS  Google Scholar 

  7. Dixon RA (2004) Phytoestrogens. Ann Rev Plant Biol 55: 225–261

    CrossRef  CAS  Google Scholar 

  8. Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M et al. (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. PNAS 100: 8595–8600

    PubMed  CrossRef  CAS  Google Scholar 

  9. Wink ME (1999) Functions of plant secondary metabolites and their exploitation in biotechnology, vol. 3, CRC Press, Boca Raton

    Google Scholar 

  10. Firn R, Jones C (2003) Natural products-a simple model to explain chemical diversity. Nat Prod Rep 20: 382–391

    PubMed  CrossRef  CAS  Google Scholar 

  11. Firn R, Jones C (1999) Secondary metabolism and the risks of GMOs. Nature 400: 13–14

    PubMed  CrossRef  CAS  Google Scholar 

  12. Firn R, Jones C (2000) The evolution of secondary metabolism — a unifying model. Mol Microbiol 37: 989–994

    PubMed  CrossRef  CAS  Google Scholar 

  13. Rohloff J, Bones A (2005) Volatile profiling of Arabidopsis thaliana — putative olfactory compounds in plant communication. Phytochemistry 66: 1941–1955

    PubMed  CrossRef  CAS  Google Scholar 

  14. Verdonk J, Ric de Vos C, Verhoeven H, Haring M, van Tunen A, Schuurink R (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62: 997–1008

    PubMed  CrossRef  CAS  Google Scholar 

  15. Frydman A, Weisshaus O, Bar-Peled M, Huhman DV, Sumner LW, Marin FR, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: Isolation and functional characterization of the gene encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J 40: 88–100

    PubMed  CrossRef  CAS  Google Scholar 

  16. D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12: 79R–105

    PubMed  CrossRef  CAS  Google Scholar 

  17. Relic B, Perret X, Estrada-Garcia M, Kopcinska J, Golinowski W, Krishnan H, Pueppke S, Broughton W (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13: 171–178

    PubMed  CrossRef  CAS  Google Scholar 

  18. Oldroyd GED (2001) Dissecting symbiosis: developments in Nod factor signal transduction. Ann Bot 87: 709–718

    CrossRef  CAS  Google Scholar 

  19. Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in Alfalfa. Plant Physiol 138: 2245–2259

    PubMed  CrossRef  CAS  Google Scholar 

  20. Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture Ecosystems & Environment 75: 1–12

    CrossRef  CAS  Google Scholar 

  21. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Free radicals and grape seed proanthocyanidn extract: importance in human health and disease prevention. Toxicology 148: 187–197

    PubMed  CrossRef  CAS  Google Scholar 

  22. Setchell KDR, Cassidy A (1999) Dietary isoflavones: Biological effects and relevance to human health. J Nutrition 129: 758S–767S

    CAS  Google Scholar 

  23. MerzDemlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS (2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 71: 1462–1469

    CAS  Google Scholar 

  24. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727–747

    PubMed  CAS  Google Scholar 

  25. Gidley M (2004) Naturally functional foods — challenges and opportunities. Asia Pac J Clin Nutr 13: S31

    Google Scholar 

  26. Grabley S, Thiericke R (2000) Drug Discovery from Nature, 366, Springer-Verlag, New York

    Google Scholar 

  27. Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332: 1004–1014

    PubMed  CrossRef  CAS  Google Scholar 

  28. Khayat D, Antoine E, Coeffic D (2000) Taxol in the management of cancers of the breast and the ovary. Cancer Invest 18: 242–260

    PubMed  CAS  Google Scholar 

  29. Sriram D, Rao V, Chandrasekhara K, Yogeeswari P (2004) Progress in the research of artemisinin and its analogues as antimalarials: an update. Nat Prod Res 18: 503–527

    PubMed  CrossRef  CAS  Google Scholar 

  30. Price R (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9: 1815–1827

    PubMed  CrossRef  CAS  Google Scholar 

  31. Jung M, Lee K, Kim H, Park M (2004) Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Curr Med Chem 11: 1265–1284

    PubMed  CAS  Google Scholar 

  32. Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12: 717–739

    PubMed  CrossRef  Google Scholar 

  33. Stevens J, Page J (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65: 1317–1330

    PubMed  CrossRef  CAS  Google Scholar 

  34. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck A (2003) Phytoestrogens: recent developments. Planta Med 69: 589–599

    PubMed  CrossRef  CAS  Google Scholar 

  35. Sumner L, Mendes P, Dixon R (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817–836

    PubMed  CrossRef  CAS  Google Scholar 

  36. Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5: 109

    PubMed  CrossRef  Google Scholar 

  37. Trethewey R (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7: 196–201

    PubMed  CrossRef  CAS  Google Scholar 

  38. Lange BM, Ketchum REB, Croteau RB (2001) Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol 127: 305–314

    PubMed  CrossRef  CAS  Google Scholar 

  39. Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56: 323–336

    PubMed  CrossRef  CAS  Google Scholar 

  40. Huhman D, Sumner L (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360

    PubMed  CrossRef  CAS  Google Scholar 

  41. Achnine L, Huhman D, Farag M, Sumner L, Blount J, Dixon R (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41: 875–887

    PubMed  CrossRef  CAS  Google Scholar 

  42. Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595

    PubMed  CrossRef  CAS  Google Scholar 

  43. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2: 488–494

    PubMed  CrossRef  CAS  Google Scholar 

  44. Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40: 151–163

    PubMed  CrossRef  CAS  Google Scholar 

  45. Mesnard F, Ratcliffe R (2005) NMR analysis of plant nitrogen metabolism. Photosynth Res 83: 163–180

    PubMed  CrossRef  CAS  Google Scholar 

  46. Wolfender J, Queiroz E, Hostettmann K (2005) Phytochemistry in the microgram domain — a LC-NMR perspective. Magn Reson Chem 43: 697–709

    PubMed  CrossRef  CAS  Google Scholar 

  47. Zanolari B, Wolfender J, Guilet D, Marston A, Queiroz E, Paulo M, Hostettmann K (2003) On-line identification of tropane alkaloids from Erythroxylum vacciniifolium by liquid chromatography-UV detection-multiple mass spectrometry and liquid chromatographynuclear magnetic resonance spectrometry. J Chromatogr A 1020: 75–89

    PubMed  CrossRef  CAS  Google Scholar 

  48. Wolfender J, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000: 437–455

    PubMed  CrossRef  CAS  Google Scholar 

  49. Exarchou V, Krucker M, van Beek T, Vervoort J, Gerothanassis I, Albert K (2005) LCNMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43: 681–687

    PubMed  CrossRef  CAS  Google Scholar 

  50. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159–4168

    PubMed  CrossRef  CAS  Google Scholar 

  51. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant fuctional genomics. Nat Biotechnol 18: 1142–1161

    CrossRef  CAS  Google Scholar 

  52. Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20: 3647–3651

    PubMed  CrossRef  CAS  Google Scholar 

  53. Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18: 241S–248

    Google Scholar 

  54. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. PNAS 101: 15243–15248

    PubMed  CrossRef  CAS  Google Scholar 

  55. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23: 131–142

    PubMed  CrossRef  CAS  Google Scholar 

  56. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29

    PubMed  CrossRef  CAS  Google Scholar 

  57. Roessner-Tunali U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie AR (2003) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol 133: 683–692

    PubMed  CrossRef  CAS  Google Scholar 

  58. Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove L, Fernie A (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221: 891–903

    PubMed  CrossRef  CAS  Google Scholar 

  59. Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp Bot 56: 309–321

    PubMed  CrossRef  CAS  Google Scholar 

  60. Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochem 62: 875–886

    CrossRef  CAS  Google Scholar 

  61. D’Auria J, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8: 308–316

    PubMed  CrossRef  CAS  Google Scholar 

  62. Romeo JT (2004) Secondary metabolism in model systems, volume 38: recent advances in phytochemistry, vol. 38, Elsevier Science, San Diego, CA

    Google Scholar 

  63. Blount J, Masoud S, Sumner L, Huhman D, Dixon R (2002) Over-expression of cinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cellsuspension cultures. Planta 214: 902–910

    PubMed  CrossRef  CAS  Google Scholar 

  64. Liu C, Huhman D, Sumner L, Dixon R (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36: 471–484

    PubMed  CrossRef  CAS  Google Scholar 

  65. Frydman A, Weisshaus O, Huhman D, Sumner L, Bar-Peled M, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2005) Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. J Agric Food Chem 53: 9708–9712

    PubMed  CrossRef  CAS  Google Scholar 

  66. Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595

    PubMed  CrossRef  CAS  Google Scholar 

  67. Chen F, Duran AL, Blount JW, Sumner LW, Dixon RA (2003) Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis. Phytochem 64: 1013–1021

    CrossRef  CAS  Google Scholar 

  68. von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134: 548–559

    CrossRef  CAS  Google Scholar 

  69. Hirai MY, Saito K (2004) Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55: 1871–1879

    PubMed  CrossRef  CAS  Google Scholar 

  70. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS 101: 10205–10210

    PubMed  CrossRef  CAS  Google Scholar 

  71. Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138: 1887–1896

    CrossRef  CAS  Google Scholar 

  72. Suzuki H, Reddy MS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendes P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220: 696–707

    PubMed  CrossRef  CAS  Google Scholar 

  73. Sumner LW (2006) Current status and forward looking thoughts on LC/MS metabolomics, In Saito K, Dixon RA, Willmitzer L (ed.) Biotechnology in Agriculture and Forestry, vol. 57 Springer-Verlag, Berlin, 21–32

    Google Scholar 

  74. Huhman DV, Berhow M, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J Ag Food Chem 53: 1914–1920

    CrossRef  CAS  Google Scholar 

  75. Mondello L, Lewis AC, Bartle KD (2002) Multidimensional chromatography, John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  76. Evans C, Jorgenson J (2004) Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules. Anal Bioanal Chem 378: 1952–1961

    PubMed  CrossRef  CAS  Google Scholar 

  77. Washburn M, Wolters D, Yates J (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247

    PubMed  CrossRef  CAS  Google Scholar 

  78. Wolters D, Washburn M, Yates J (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73: 5683–5690

    PubMed  CrossRef  CAS  Google Scholar 

  79. Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermannn R, Fiehn O (2005) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1: 65–73

    CrossRef  CAS  Google Scholar 

  80. Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221: 28–38

    PubMed  CrossRef  CAS  Google Scholar 

  81. Asano T, Masumura T, Kusano H, Kurita S, Shimada H, Kadowaki KI (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32: 401–408

    PubMed  CrossRef  CAS  Google Scholar 

  82. Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells of vascular tissues of maize. Plant Cell 15: 583–596

    PubMed  CrossRef  CAS  Google Scholar 

  83. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302: 1956–1960

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Sumner, L.W., Huhman, D.V., Urbanczyk-Wochniak, E., Lei, Z. (2007). Methods, applications and concepts of metabolite profiling: Secondary metabolism. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_9

Download citation