Skip to main content

Methods, applications and concepts of metabolite profiling: Primary metabolism

  • Chapter

Part of the Experientia Supplementum book series (EXS,volume 97)

Abstract

In the 1990s the concept of a comprehensive analysis of the metabolic complement in biological systems, termed metabolomics or alternately metabonomics, was established as the last of four cornerstones for phenotypic studies in the post-genomic era. With genomic, transcriptomic, and proteomic technologies in place and metabolomic phenotyping under rapid development all necessary tools appear to be available today for a fully functional assessment of biological phenomena at all major system levels of life. This chapter attempts to describe and discuss crucial steps of establishing and maintaining a gas chromatography/electron impact ionization/mass spectrometry (GC-EI-MS)-based metabolite profiling platform. GC-EI-MS can be perceived as the first and exemplary profiling technology aimed at simultaneous and non-biased analysis of primary metabolites from biological samples. The potential and constraints of this profiling technology are among the best understood. Most problems are solved as well as pitfalls identified. Thus GC-EI-MS serves as an ideal example for students and scientists who intend to enter the field of metabolomics. This chapter will be biased towards GC-EI-MS analyses but aims at discussing general topics, such as experimental design, metabolite identification, quantification and data mining.

Keywords

  • Metabolite Profile
  • Mass Fragment
  • Primary Metabolism
  • Detector Reading
  • Isoascorbic Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-7439-6_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-7439-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J Bacteriol 180: 5109–5116

    PubMed  CAS  Google Scholar 

  2. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373–378

    PubMed  CrossRef  CAS  Google Scholar 

  3. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181–1189

    PubMed  CrossRef  CAS  Google Scholar 

  4. Stoughton RB, Friend SH (2005) Innovation — How molecular profiling could revolutionize drug discovery. Nat Rev Drug Dis 4: 345–350

    CrossRef  CAS  Google Scholar 

  5. Trethewey RN, Krotzky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2: 83–85

    PubMed  CrossRef  CAS  Google Scholar 

  6. Fiehn O (2002) Metabolomics — the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171

    PubMed  CrossRef  CAS  Google Scholar 

  7. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochem 62: 817–836

    CrossRef  CAS  Google Scholar 

  8. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5: 763–769

    PubMed  CrossRef  CAS  Google Scholar 

  9. Jellum E, Helland P, Eldjarn L, Markwardt U, Marhofer J (1975) Development of a computer-assisted search for anomalous compounds (CASAC). J Chromatogr 112: 573–580

    PubMed  CrossRef  CAS  Google Scholar 

  10. Jellum E (1977) Profiling of human-body fluids in healthy and diseased states using gaschromatography and mass-spectrometry, with special reference to organic-acids. J Chromatrogr B 143: 427–462

    CrossRef  CAS  Google Scholar 

  11. Jellum E (1979) Application of mass-spectrometry and metabolite profiling to the study of human-diseases. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 293: 13–19

    CrossRef  CAS  Google Scholar 

  12. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157–1161

    PubMed  CrossRef  CAS  Google Scholar 

  13. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23: 131–142

    PubMed  CrossRef  CAS  Google Scholar 

  14. Kopka J, Fernie AF, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5(6): 109–117

    PubMed  CrossRef  Google Scholar 

  15. Erban A, Schauer N, Fernie AR, Kopka J (2006) Non-supervised construction and application of mass spectral and retention time index libraries from time-of-flight GC-MS metabolite profiles. In: W Weckwerth (ed.): Methods in Molecular Biology Vol. 358. Humana Press Inc., Totowa, USA, pp 19–38

    Google Scholar 

  16. Kopka J (2006) Gas chromatography mass spectrometry, Chapter 1.1. In: K Saito, R Dixon, L Willmitzer (eds): Plant Metabolomics (Biotechnology in Agriculture and Forestry Vol. 57), Springer-Verlag, Heidelberg, pp 3–20

    CrossRef  Google Scholar 

  17. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159–4168

    PubMed  CrossRef  CAS  Google Scholar 

  18. Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 18: 7809–7814

    CrossRef  Google Scholar 

  19. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB et al. (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102: 14458–14462

    PubMed  CrossRef  CAS  Google Scholar 

  20. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29

    PubMed  CrossRef  CAS  Google Scholar 

  21. Junker BH, Wuttke R, Tiessen A, Geigenberger P, Sonnewald U, Willmitzer L, Fernie AR (2004) Temporally regulated expression of a yeast invertase in potato tubers allows dissection of the complex metabolic phenotype obtained following its constitutive expression. Plant Mol Biol 56: 91–110

    PubMed  CrossRef  CAS  Google Scholar 

  22. Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23: 28–33

    PubMed  CrossRef  CAS  Google Scholar 

  23. Bino RJ, deVos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2(dg) mutation of tomato: alterations in the fruit metabolome. New Phytologist 166: 427–438

    PubMed  CrossRef  CAS  Google Scholar 

  24. Kovàts ES (1958) Gas-chromatographische charakterisierung organischer verbindungen: teil 1. retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41: 1915–1932

    CrossRef  Google Scholar 

  25. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochem 62: 887–900

    CrossRef  CAS  Google Scholar 

  26. Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, Spark-man OD, Zaikin V, Zhu D (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10: 287–299

    PubMed  CrossRef  CAS  Google Scholar 

  27. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10: 770–781

    CrossRef  CAS  Google Scholar 

  28. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56: 219–243

    PubMed  CrossRef  CAS  Google Scholar 

  29. Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal Biochem 331: 283–295

    PubMed  CrossRef  CAS  Google Scholar 

  30. Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19: 2283–2293

    PubMed  CrossRef  CAS  Google Scholar 

  31. Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76: 1738–1745

    PubMed  CrossRef  CAS  Google Scholar 

  32. Jonsson P, Johansson AI, Gullberg J, Trygg J, Grung B, Marklund S, Sjöström M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differ ences between samples in GC/MS-based metabolomic analyses. Anal Chem 77: 5635–5642

    PubMed  CrossRef  CAS  Google Scholar 

  33. Bino RJ, de Vos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol 166: 427–438

    PubMed  CrossRef  CAS  Google Scholar 

  34. Vorst O, de Vos CHR, Lommen A, Staps RV, Visser RGF, Bino RJ, Hall RD (2005) A nondirected approach to the differential analysis of multiple LC-MS derived metabolic pro-files. Metabolomics 1: 169–180

    CrossRef  CAS  Google Scholar 

  35. Luedemann A, Erban A, Wagner C, Kopka J (2004) Method for analyzing metabolites. International patent application (PCT/EP2004/014450) published under the patent cooperation treaty (WO 2005/059556 A1)

    Google Scholar 

  36. Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotech Bioeng 85: 620–628

    CrossRef  CAS  Google Scholar 

  37. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336: 164–171

    PubMed  CrossRef  CAS  Google Scholar 

  38. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphoryla-tion diminishes during fruit development. Plant Physiol 133: 84–99

    PubMed  CrossRef  CAS  Google Scholar 

  39. Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56: 297–307

    PubMed  CrossRef  CAS  Google Scholar 

  40. Kopka J (2005) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124: 312–322

    CrossRef  Google Scholar 

  41. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acid Res 32: D277–280

    PubMed  CrossRef  CAS  Google Scholar 

  42. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acid Res 32: D431–433

    PubMed  CrossRef  CAS  Google Scholar 

  43. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acid Res 32: D438–442

    PubMed  CrossRef  CAS  Google Scholar 

  44. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L et al. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters 579: 1332–1337

    PubMed  CrossRef  CAS  Google Scholar 

  45. Oksman-Caldentey K-M, Inzé D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101: 9949–9950

    PubMed  CrossRef  CAS  Google Scholar 

  46. Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7: 196–201

    PubMed  CrossRef  CAS  Google Scholar 

  47. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000a) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72: 3573–3580

    PubMed  CrossRef  CAS  Google Scholar 

  48. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Gibon Y, Stitt M, Willmitzer L et al. (2005) GMD@CSBDB: The Golm Metabolome Database. Bioinformatics 21: 1635–1638

    PubMed  CrossRef  CAS  Google Scholar 

  49. Sinha AE, Fraga CG, Prazen BJ, Synovec RE (2004a) Trilinear chemometric analysis of two dimensional comprehensive gas chromatography-time-of-flight mass spectrometry data. J Chromatogr A 1027: 269–277

    PubMed  CrossRef  CAS  Google Scholar 

  50. Sinha AE, Hope JL, Prazen BJ, Nilsson EJ, Jack RM, Synovec RE (2004b) Algorithm for locating analytes of interest based on mass spectral similarity in GC × GC-TOF-MS data: analysis of metabolites in human infant urine. J Chromatogr A 1058: 209–215

    PubMed  CrossRef  CAS  Google Scholar 

  51. Sinha AE, Prazen BJ, Synovec RE (2004c) Trends in chemometric analysis of comprehensive two-dimensional separations. Anal Bioanal Chem 378: 1948–1951

    PubMed  CrossRef  CAS  Google Scholar 

  52. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic foot-printing and systems biology: The medium is the message. Nat Rev Microbiol 3: 557–565

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Steinhauser, D., Kopka, J. (2007). Methods, applications and concepts of metabolite profiling: Primary metabolism. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_8

Download citation