Skip to main content

Case studies for transcriptional profiling

  • Chapter
  • 1103 Accesses

Part of the Experientia Supplementum book series (EXS,volume 97)

Abstract

DNA microarrays are frequently used to study transcriptome regulation in a wide variety of organisms. Although they are an invaluable tool for the acquisition of large scale dataset in plant systems biology, a number of surprising results and unanticipated complications are often encountered that illustrate the limitations and potential pitfalls of this technology. In this chapter we will present examples of real world studies from two classes of microarray experiments that were designed to (i) identify target genes for transcriptional regulators and (ii) to characterize complex expression patterns to reveal unexpected dependencies within transcriptional networks.

Keywords

  • Direct Target Gene
  • Polycomb Group Protein
  • Identify Target Gene
  • Primary Target Gene
  • Polycomb Group Gene

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-7439-6_4
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-7439-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otte AP, Kwaks TH (2003) Gene repression by polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 13: 448–454

    PubMed  CrossRef  CAS  Google Scholar 

  2. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443

    PubMed  CrossRef  CAS  Google Scholar 

  3. Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36: 99–124

    PubMed  CrossRef  CAS  Google Scholar 

  4. Köhler C, Grossniklaus U (2002) Epigenetic inheritance of expression states in plant development: the role of polycomb group proteins. Curr Opin Cell Biol 14: 773–779

    PubMed  CrossRef  Google Scholar 

  5. Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8: 439–445

    PubMed  CrossRef  CAS  Google Scholar 

  6. Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycombgroup protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17: 1540–1553

    PubMed  CrossRef  Google Scholar 

  7. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446–450

    PubMed  CrossRef  CAS  Google Scholar 

  8. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm develop ment without fertilization. Plant Cell 11: 407–416

    PubMed  CrossRef  CAS  Google Scholar 

  9. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 296–301

    PubMed  CrossRef  CAS  Google Scholar 

  10. Spillane C, MacDougall C, Stock C, Köhler C, Vielle-Calzada J, Nunes SM, Grossniklaus U, Goodrich J (2000) Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol 10: 1535–1538

    PubMed  CrossRef  CAS  Google Scholar 

  11. Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97: 10637–10642

    PubMed  CrossRef  CAS  Google Scholar 

  12. Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22: 4804–4814

    PubMed  CrossRef  Google Scholar 

  13. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–209

    PubMed  CrossRef  CAS  Google Scholar 

  14. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500

    PubMed  CrossRef  CAS  Google Scholar 

  15. Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285: 582–584

    PubMed  CrossRef  CAS  Google Scholar 

  16. William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101: 1775–1780

    PubMed  CrossRef  CAS  Google Scholar 

  17. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–3297

    PubMed  CAS  Google Scholar 

  18. Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27: 48–54

    PubMed  CAS  Google Scholar 

  19. Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277: 41987–42002

    PubMed  CrossRef  CAS  Google Scholar 

  20. Menges M, Hennig L, Gruissem W, Murray JA (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53: 423–442

    PubMed  CrossRef  CAS  Google Scholar 

  21. Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30: 203–212

    PubMed  CrossRef  CAS  Google Scholar 

  22. Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J et al. (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18: 1593–1599

    PubMed  CrossRef  CAS  Google Scholar 

  23. Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci USA 99: 4379–4384

    PubMed  CrossRef  CAS  Google Scholar 

  24. Hennig L, Gruissem W, Grossniklaus U, Köhler C (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol 135: 1765–1775

    PubMed  CrossRef  CAS  Google Scholar 

  25. Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464–489

    PubMed  CrossRef  CAS  Google Scholar 

  26. Shirley BW (1996) Flavonoid biosynthesis-new functions for an old pathway. Trends Plant Sci 1: 377–382

    CrossRef  Google Scholar 

  27. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396–399

    PubMed  CrossRef  CAS  Google Scholar 

  28. Matsubayashi Y (2003) Ligand-receptor pairs in plant peptide signaling. J Cell Sci 116: 3863–3870

    PubMed  CrossRef  CAS  Google Scholar 

  29. Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by EGG APPARATUS 1 of maize. Science 307: 573–576

    PubMed  CrossRef  CAS  Google Scholar 

  30. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18: 455–457

    PubMed  CrossRef  CAS  Google Scholar 

  31. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657

    PubMed  CrossRef  Google Scholar 

  32. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Hennig, L., Köhler, C. (2007). Case studies for transcriptional profiling. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_4

Download citation