Skip to main content

Natural and artificially induced genetic variability in crop and model plant species for plant systems biology

  • Chapter

Part of the Experientia Supplementum book series (EXS,volume 97)

Abstract

The sequencing of plant genomes which was completed a few years ago for Arabidopsis thaliana and Oryza sativa is currently underway for numerous crop plants of commercial value such as maize, poplar, tomato grape or tobacco. In addition, hundreds of thousands of expressed sequence tags (ESTs) are publicly available that may well represent 40–60% of the genes present in plant genomes. Despite its importance for life sciences, genome information is only an initial step towards understanding gene function (functional genomics) and deciphering the complex relationships between individual genes in the framework of gene networks. In this chapter we introduce and discuss means of generating and identifying genetic diversity, i.e., means to genetically perturb a biological system and to subsequently analyse the systems response, e.g., the changes in plant morphology and chemical composition. Generating and identifying genetic diversity is in its own right a highly powerful resource of information and is established as an invaluable tool for systems biology.

Keywords

  • Quantitative Trait Locus
  • Reverse Genetic
  • Quantitative Trait Locus Detection
  • Curr Opin Plant Biol
  • Model Plant Species

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-7439-6_2
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-7439-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rensink WA, Lee Y, Liu J, Iobst S, Ouyang S, Buell RC (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics 6: 124

    PubMed  CrossRef  CAS  Google Scholar 

  2. Diévart A, Clark SE (2003) Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Curr Opin Plant Biol 6: 507–516

    PubMed  CrossRef  CAS  Google Scholar 

  3. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing — a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11: 63–68

    PubMed  CAS  CrossRef  Google Scholar 

  4. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129: 440–450

    PubMed  CAS  CrossRef  Google Scholar 

  5. Xu YB, McCouch SR, Zhang QF (2005) How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59: 7–26

    PubMed  CAS  CrossRef  Google Scholar 

  6. Hackett CA (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48: 585–599

    PubMed  CAS  CrossRef  Google Scholar 

  7. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199

    PubMed  CAS  Google Scholar 

  8. Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/ EXP version 3.0. A tutorial and reference manual http://linkage.rockeffeller.edu/soft/ mapmaker

    Google Scholar 

  9. Jansen RC, Stam P (1994) High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455

    PubMed  CAS  Google Scholar 

  10. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468

    PubMed  CAS  Google Scholar 

  11. Churchill GA, Doerge RW (1996) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    Google Scholar 

  12. Darvasi A, Soller M (1997) Simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27: 125–132

    PubMed  CAS  CrossRef  Google Scholar 

  13. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48: 453–461

    PubMed  CAS  CrossRef  Google Scholar 

  14. Grattapaglia D, Bertolucci FL, Sederoff RR (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Theor Appl Genet 90: 933–947

    CAS  CrossRef  Google Scholar 

  15. Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form and phenology traits in a forest tree. Genetics 139: 963–973

    PubMed  CAS  Google Scholar 

  16. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203

    CrossRef  Google Scholar 

  17. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTLs. Genetics 141: 1147–1162

    PubMed  CAS  Google Scholar 

  18. Ronin Y, Korol A, Shtemberg M, Nevo E, Soller M (2003) High-resolution mapping of quantitative trait loci by selective recombinant genotyping. Genetics 164: 1657–1666

    PubMed  CAS  Google Scholar 

  19. Lynch M, Walsh B (eds) (1998) Genetics and analysis of quantitative traits. Sinauer Associates

    Google Scholar 

  20. De Vienne D, Causse M (2002) Mapping and characterizing quantitative trait loci. In: D de Vienne (ed): Molecular markers in Plant genetics and Biotechnology. Sci Publisher Inc, 89–125

    Google Scholar 

  21. Xu SZ (2003) Theoretical basis of the Beavis effect. Genetics 165: 2259–2268

    PubMed  Google Scholar 

  22. Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80: 137–142

    PubMed  CrossRef  Google Scholar 

  23. Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435: 95–98

    PubMed  CAS  CrossRef  Google Scholar 

  24. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99: 978–987

    CAS  CrossRef  Google Scholar 

  25. Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127: 163–177

    CAS  CrossRef  Google Scholar 

  26. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168: 2169–2185

    PubMed  CAS  CrossRef  Google Scholar 

  27. Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D et al. (1998) Advanced back-cross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97: 1191–1196

    CrossRef  Google Scholar 

  28. Fatokun CA, Menanciohautea DI, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on rflp mapping. Genetics 132: 841–846

    PubMed  CAS  Google Scholar 

  29. Timmerman-Vaughan GM, Mccallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93: 431–439

    CAS  CrossRef  Google Scholar 

  30. Maughan PJ, Maroof MAS, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93: 574–579

    CAS  Google Scholar 

  31. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718

    CAS  CrossRef  PubMed  Google Scholar 

  32. Devos M, Gale D (1997) Comparative genetics in the grasses. Plant Mol Biol 35: 3–15

    PubMed  CAS  CrossRef  Google Scholar 

  33. Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107: 359–370

    PubMed  CAS  CrossRef  Google Scholar 

  34. Tanksley SD (1993) Mapping Polygenes. Annu Rev Genet 27: 205–233

    PubMed  CAS  CrossRef  Google Scholar 

  35. Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807–1817

    PubMed  CAS  Google Scholar 

  36. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485–488

    PubMed  CAS  CrossRef  Google Scholar 

  37. Chaib J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112: 934–944

    PubMed  CAS  CrossRef  Google Scholar 

  38. Prioul JL, Quarrie SA, Causse M, de Vienne D (1997) Dissecting complex physiological functions through the use of molecular quantitative genetics. J Exp Bot 48: 1151–1163

    CAS  CrossRef  Google Scholar 

  39. Lefebvre V, Palloix A (1996). Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor Appl Genet 93: 503–511

    CAS  Google Scholar 

  40. Sergeeva LI, Keurentjes JJB, Bentsink L, Vonk J, van der Plas LHW, Koornneef M, Vreugdenhil D (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA 103: 2994–2999

    PubMed  CAS  CrossRef  Google Scholar 

  41. Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157: 1789–1803

    PubMed  CAS  Google Scholar 

  42. Paterson AH, de Verna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735–742

    PubMed  CAS  Google Scholar 

  43. Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100: 471–479

    CAS  CrossRef  Google Scholar 

  44. Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breeding 13: 1–14

    CAS  CrossRef  Google Scholar 

  45. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90: 10972–10976

    PubMed  CAS  CrossRef  Google Scholar 

  46. Jansen RC, van Ooijen JW, Stam P, Lister C, Dean C (1995) Genotype-by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91: 33–37

    CAS  CrossRef  Google Scholar 

  47. Romagosa I, Ullrich SE, Han F, Hayes PM (1996) Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theor Appl Genet 93: 30–37

    CrossRef  Google Scholar 

  48. Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize. Theor Appl Genet 110: 92–105

    PubMed  CAS  CrossRef  Google Scholar 

  49. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficency in Arabidopsis. Plant Physiol 131: 345–358

    PubMed  CAS  CrossRef  Google Scholar 

  50. Juenger TE, Mckay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta C-13, stomatal conductance and transpiration efficiency. Plant Cell Environ 28: 697–708

    CAS  CrossRef  Google Scholar 

  51. Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the response of maize leaf growth to temperature and water deficit. Plant Physiol 131: 664–675

    PubMed  CAS  CrossRef  Google Scholar 

  52. Quilot B, Kervella J, Genard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56: 3083–3092

    PubMed  CAS  CrossRef  Google Scholar 

  53. Yin XY, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9: 426–432

    PubMed  CAS  CrossRef  Google Scholar 

  54. Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19: 303–306

    PubMed  CAS  CrossRef  Google Scholar 

  55. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10: 298–304

    CrossRef  CAS  Google Scholar 

  56. Tuinstra MR, Ejeta G, Goldbrough PB (1997) Heterogeneous inbred families (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95: 1005–1011

    CAS  CrossRef  Google Scholar 

  57. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2: 983–988

    PubMed  CAS  CrossRef  Google Scholar 

  58. Durrett RT, Chen KY, Tanksley SD (2002) A simple formula useful for positional cloning. Genetics 160: 353–355

    PubMed  CAS  Google Scholar 

  59. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97: 4718–4723

    PubMed  CAS  CrossRef  Google Scholar 

  60. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305: 1786–1789

    PubMed  CAS  CrossRef  Google Scholar 

  61. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88

    PubMed  CAS  CrossRef  Google Scholar 

  62. Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach. A Review. Molecular Breeding 7: 275–291

    CAS  CrossRef  Google Scholar 

  63. Byrne PF, McMullen MD, Snooks ME, Musket TA, Theuri JM, Widstrom NW, Wiseman BR, Coe EH (1996) Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci USA 93: 8820–8825

    PubMed  CAS  CrossRef  Google Scholar 

  64. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28: 286–289

    PubMed  CAS  CrossRef  Google Scholar 

  65. Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167: 1361–1369

    PubMed  CAS  CrossRef  Google Scholar 

  66. Osterberg MK, Shavorskaya O, Lascoux M, Lagercrantz U (2002) Naturally occurring indel variation in the Brassica nigra COL1 gene is associated with variation in flowering time. Genetics 161: 299–306

    PubMed  CAS  Google Scholar 

  67. Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108: 743–749

    PubMed  CAS  CrossRef  Google Scholar 

  68. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics 5: Art. No. 19

    Google Scholar 

  69. El-Assal SED, Alonso-Blanco C, Peeters AJM, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29: 435–440

    CAS  CrossRef  Google Scholar 

  70. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1l. Genes Dev 18: 926–936

    PubMed  CAS  CrossRef  Google Scholar 

  71. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141–1146

    PubMed  CAS  CrossRef  Google Scholar 

  72. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98: 7922–7927

    PubMed  CAS  CrossRef  Google Scholar 

  73. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18: 700–714

    PubMed  CAS  CrossRef  Google Scholar 

  74. Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99: 13302–13306

    PubMed  CAS  CrossRef  Google Scholar 

  75. Cong B, Liu JP, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99: 13606–13611

    PubMed  CAS  CrossRef  Google Scholar 

  76. Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA 102: 2460–2465

    PubMed  CAS  CrossRef  Google Scholar 

  77. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101: 700–707

    PubMed  CAS  CrossRef  Google Scholar 

  78. Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100: 14587–14592

    PubMed  CAS  CrossRef  Google Scholar 

  79. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y et al. (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS Plant Cell 12: 2473–2483

    PubMed  CAS  CrossRef  Google Scholar 

  80. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43: 1096–1105

    PubMed  CAS  CrossRef  Google Scholar 

  81. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485–488

    PubMed  CAS  CrossRef  Google Scholar 

  82. Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14: 1441–1456

    PubMed  CrossRef  Google Scholar 

  83. Schmidt R (2000) Synteny: recent advances and future prospects. Current Opin Plant Biol 3: 97–102

    CAS  CrossRef  Google Scholar 

  84. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14: 1457–1467

    PubMed  CAS  CrossRef  Google Scholar 

  85. Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13: 513–523

    PubMed  CAS  CrossRef  Google Scholar 

  86. Wayne ML, McIntyre LM (2002) Combining mapping and arraying: An approach to candidate gene identification. Proc Natl Acad Sci USA 99: 14903–14906

    PubMed  CAS  CrossRef  Google Scholar 

  87. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302

    PubMed  CAS  CrossRef  Google Scholar 

  88. Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21: 616–623

    PubMed  CAS  CrossRef  Google Scholar 

  89. Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C (2004) Colocation between a gene encoding the bZip factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 47: 705–713

    PubMed  CAS  CrossRef  Google Scholar 

  90. Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301

    PubMed  CAS  Google Scholar 

  91. de Vienne D, Leonardi A, Damerval C, Zivy M (1999) Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J Exp Bot 50: 303–309

    CrossRef  Google Scholar 

  92. Consoli L, Lefevre A, Zivy M, de Vienne D, Damerval C (2002) QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol 48: 575–581

    PubMed  CAS  CrossRef  Google Scholar 

  93. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Brudigam C, Kopka J et al. (2006) Genetics of metabolite in fruits of interspecific introgressions of tomato. Nat Biotechnol 24: 447–454

    PubMed  CAS  CrossRef  Google Scholar 

  94. Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39: 682–696

    PubMed  CAS  CrossRef  Google Scholar 

  95. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290

    PubMed  CAS  CrossRef  Google Scholar 

  96. Schneider A, Kirch T, Gigoshvili T, Mock H-P, Sonnewald U, Simon R, Flügge U-I, Werr W (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett 579: 4622–4628

    PubMed  CAS  Google Scholar 

  97. Waterhouse PM, Heliwell CA (2003) Exploring plant genomes by RNAi-induced gene silencing. Nat Rev Genet 4: 29–38

    PubMed  CAS  CrossRef  Google Scholar 

  98. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193–195

    PubMed  CAS  CrossRef  Google Scholar 

  99. Meinke DW, Meinke LK, Showalter TC, Schissel AM, Mueller LA, Tzafrir I (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiology 131: 409–418

    PubMed  CAS  CrossRef  Google Scholar 

  100. An G, Jeong D-H, Jung K-H, Lee S (2005) Reverse genetics approaches for functional genomics of rice. Plant Mol Biol 59: 111–123

    PubMed  CAS  CrossRef  Google Scholar 

  101. Hirochika H, Guiderdoni E, An G, Hsing Y-I, Eun MY, Han C-D, Upadhyaya N, Ramachandran R, Zhang Q, Pereira A et al. (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54: 325–334

    PubMed  CAS  CrossRef  Google Scholar 

  102. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy AA (1997) A new model system for tomato genetics. Plant J 12: 1465–1472

    CAS  CrossRef  Google Scholar 

  103. Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 38: 861–872

    Google Scholar 

  104. Gidoni D, Fuss E, Burbidge A, Speckmann GJ, James S, Nijkamp D, Mett A, Feiler J, Smoker M, de Vroomen MJ et al. (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol 51: 83–98

    PubMed  CAS  CrossRef  Google Scholar 

  105. Mathews H, Clendennen SK, Caldwell CG, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15: 1689–1703

    PubMed  CAS  CrossRef  Google Scholar 

  106. Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5: 112–117

    PubMed  CAS  CrossRef  Google Scholar 

  107. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27: 235–242

    PubMed  CAS  CrossRef  Google Scholar 

  108. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18: 455–457

    PubMed  CAS  CrossRef  Google Scholar 

  109. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126: 480–484

    PubMed  CAS  CrossRef  Google Scholar 

  110. Koornneef M, Dellaert LWM, van den Veen JH (1982) EMS-and radiation-induced mutation frequencies at individual loci in Arabidospis thaliana (L.) Heynh. Mutat Res 93: 109–123

    PubMed  CAS  Google Scholar 

  111. Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38: 861–872

    PubMed  CAS  CrossRef  Google Scholar 

  112. Li X, Zhang Y (2002) Reverse genetics by fast neutron mutagenesis in higher plants. Funct Integr Genomics 2: 254–258

    PubMed  CAS  CrossRef  Google Scholar 

  113. Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292: 2077–2080

    PubMed  CAS  CrossRef  Google Scholar 

  114. Yeung AT, Hattangadi D, Blakesley L, Nicolas E (2005) Enzymatic mutation detection technologies. Biotechniques 38: 749–758

    PubMed  CAS  CrossRef  Google Scholar 

  115. Winkler S, Schwabedissen A, Backasch D, Bökel C, Seidel C, Bönisch S, Fürthauer M, Kuhrs A, Cobreros L, Bran M, Gonzalez-Gaitan M (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15: 718–723

    PubMed  CAS  CrossRef  Google Scholar 

  116. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR et al. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164: 731–740

    PubMed  CAS  Google Scholar 

  117. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131: 866–871

    PubMed  CAS  CrossRef  Google Scholar 

  118. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40: 143–150

    PubMed  CAS  CrossRef  Google Scholar 

  119. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR et al. (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biology 4: 12

    PubMed  CrossRef  CAS  Google Scholar 

  120. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, non transgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23: 75–81

    PubMed  CAS  CrossRef  Google Scholar 

  121. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54: 375–401

    PubMed  CAS  CrossRef  Google Scholar 

  122. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE et al. (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13: 524–530

    PubMed  CAS  CrossRef  Google Scholar 

  123. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8: 211–215

    PubMed  CAS  CrossRef  Google Scholar 

  124. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45: 684–694

    PubMed  CAS  CrossRef  Google Scholar 

  125. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13: 2700–2707

    PubMed  CAS  CrossRef  Google Scholar 

  126. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona R, Mauleon R, Portugal A, Ulat J et al. (2005) Chemical-and irradiation-induced mutants of Indica Rice IR64 for forward and reverse genetics. Plant Mol Biol 59: 85–97

    PubMed  CAS  CrossRef  Google Scholar 

  127. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066

    PubMed  CAS  CrossRef  Google Scholar 

  128. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR et al. (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37: 778–786

    PubMed  CAS  CrossRef  Google Scholar 

  129. Qiu P, Shandilya H, D’Alessio JM, O’Connor K, Durocher J, Gerard GF (2004) Mutation detection using Surveyor nuclease. Biotechniques 36: 702–707

    PubMed  CAS  Google Scholar 

  130. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Wilmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO rep 4: 1–5

    CrossRef  CAS  Google Scholar 

  131. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914–939

    PubMed  CAS  CrossRef  Google Scholar 

  132. Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the system biology era. New Phytol 168: 9–24

    PubMed  CAS  CrossRef  Google Scholar 

  133. Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8: 242–248

    PubMed  CAS  CrossRef  Google Scholar 

  134. Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutation in yeast. Genome Biol. 6: R49

    PubMed  CrossRef  CAS  Google Scholar 

  135. Tewari M, Hu PJ, Ahn JS, Ayivi-Guedelhoussou N, Vidalain P-O, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD et al. (2004) Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signalling network. Mol Cell 13: 469–482

    PubMed  CAS  CrossRef  Google Scholar 

  136. Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005) Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58: 333–349

    PubMed  CAS  CrossRef  Google Scholar 

  137. Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic pathways unravel the effect of silent plant phenotypes. Proc Natl Acad Sci USA 101: 7809–7811

    PubMed  CAS  CrossRef  Google Scholar 

  138. Scholtz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20: 2447–2454

    CrossRef  CAS  Google Scholar 

  139. Fernie AR, Trethevey RN, Krotzky AJ, Wilmitzer L (2004) Metabolite profiling: from diagnostic to system biology. Nat Rev 5: 1–7

    CrossRef  CAS  Google Scholar 

  140. Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132: 420–425

    PubMed  CAS  CrossRef  Google Scholar 

  141. Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells: Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277: 43948–43960

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Rothan, C., Causse, M. (2007). Natural and artificially induced genetic variability in crop and model plant species for plant systems biology. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_2

Download citation