Skip to main content

Network analysis of systems elements

  • Chapter

Part of the Experientia Supplementum book series (EXS,volume 97)

Abstract

A central goal of postgenomic research is to assign a function to every predicted gene. Because genes often cooperate in order to establish and regulate cellular events the examination of a gene has also included the search for at least a few interacting genes. This requires a strong hypothesis about possible interaction partners, which has often been derived from what was known about the gene or protein beforehand. Many times, though, this prior knowledge has either been completely lacking, biased towards favored concepts, or only partial due to the theoretically vast interaction space. With the advent of high-throughput technology and robotics in biological research, it has become possible to study gene function on a global scale, monitoring entire genomes and proteomes at once. These systematic approaches aim at considering all possible dependencies between genes or their products, thereby exploring the interaction space at a systems scale. This chapter provides an introduction to network analysis and illustrates the corresponding concepts on the basis of gene expression data. First, an overview of existing methods for the identification of co-regulated genes is given. Second, the issue of topology inference is discussed and as an example a specific inference method is presented. And lastly, the application of these techniques is demonstrated for the Arabidopsis thaliana isoprenoid pathway.

Keywords

  • Network Analysis
  • Gene Expression Data
  • System Element
  • Genetic Regulatory Network
  • Isoprenoid Biosynthesis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-7439-6_14
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-7439-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donne J (1624) Meditation XVII: Devotions Upon Emergent Occasions. McGill-Queens’s Univ. Press, Montreal

    Google Scholar 

  2. Kumar A, Snyder M (2002) Proteomics: Protein complexes take the bait. Nature 415: 123–124.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Kohane IS, Kho AT, Butte AJ (2003) Microarrays for an Integrative Genomics. MIT Press

    Google Scholar 

  4. Wit E, McClure J (2004) Statistics for Microarrays, Wiley

    Google Scholar 

  5. Tayazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22: 281–285

    CrossRef  CAS  Google Scholar 

  6. Soukas A, Cohen P, Socci ND, Friedman JM (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 14: 963–980

    PubMed  CAS  Google Scholar 

  7. Eisen MB, Spellman PT, Brown PO, Botsteinl D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95: 14863–14868

    PubMed  CrossRef  CAS  Google Scholar 

  8. Tamayo P, Slonin P, Mesirov J, Zho Q, Kitareewan S, Danitrovsky E, Lander ES, Golob TR (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. PNAS 96: 2907–2912

    PubMed  CrossRef  CAS  Google Scholar 

  9. Sharan R, Maron-Katz A, Shamir R (2003) Click and expander: A system for clustering and visualizing gene expression data. Bioinformatics 19: 1787–1799

    PubMed  CrossRef  CAS  Google Scholar 

  10. Hartigan JA (1972) Direct clustering of a data matrix. J Am Statistical Assoc 67: 123–129

    CrossRef  Google Scholar 

  11. Kluger Y, Basri R, Chang JT, Gerstein M (2003) Spectral biclustering of microarray cancer data: Co-clustering genes and conditions. Genome Research 13,703–16. http://bioinfo.mbb.yale.edu/e-print/biclusters/all.pdf.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Cheng Y, Church GM (2000) Biclustering of Gene Expression Data. pp 93–103. http://cheng.ecescs.uc.edu/biclustering.

    Google Scholar 

  13. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinforrnatics 18: S136–S144

    Google Scholar 

  14. Murali TM, Kasif S (2003) Extracting Conserved Gene Expression Motifs from Gene Expression Data. Vol. 8, pp 77–88

    Google Scholar 

  15. Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter Phys 67: 031902

    PubMed  Google Scholar 

  16. PreliĆ A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2005) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22: 1122–1129

    CrossRef  Google Scholar 

  17. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1: 24–45

    PubMed  CrossRef  CAS  Google Scholar 

  18. Ernst J, Nau GJ, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics 21Suppl 1:i159–i168

    PubMed  CrossRef  CAS  Google Scholar 

  19. Luan Y, Li H (2004) Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 20: 332–339

    PubMed  CrossRef  CAS  Google Scholar 

  20. Wichert S, Fokianos K, Strimmer K (2004) Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20: 5–20

    PubMed  CrossRef  CAS  Google Scholar 

  21. Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M (2001) Beyond synexpression relationships: Local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 314: 1053–1066

    PubMed  CrossRef  CAS  Google Scholar 

  22. Bar-Joseph Z (2004) Analizing time series gene expression data. Bioinformatics 20: 2493–2503

    PubMed  CrossRef  CAS  Google Scholar 

  23. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257

    PubMed  CAS  Google Scholar 

  24. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34: 166–176

    PubMed  CAS  CrossRef  Google Scholar 

  25. Bleuler S, Zitzler E (2005) Order Preserving Clustering over Multiple Time Course Experiments, LNCS. (Springer), No 3449, pp 33–43

    Google Scholar 

  26. Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Coclustering of biological networks and gene expression data. Bioinformatics 18: S145–S154

    PubMed  Google Scholar 

  27. Speer N, Spieth C, Zell A (2004) A Memetic Co-Clustering Algorithm for Gene Expression Profiles and Biological Annotation. (IEEE), Vol 2, pp 1631–1638

    Google Scholar 

  28. Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genome wide data. Proc Natl Acad Sci USA 101: 2981–2986

    PubMed  CrossRef  CAS  Google Scholar 

  29. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7: 601–620

    PubMed  CrossRef  CAS  Google Scholar 

  30. Hartemink A, Gifford D, Jaakkola T, Young R (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. PSB01. pp 422–433

    Google Scholar 

  31. Cox D, Wermuth N (1993) Linear dependencies represented by chain graphs (with discussion). Statist Sci 8: 204–218

    Google Scholar 

  32. Cox D, Wermuth N (1996) Multivariate dependencies: Models analysis and interpretation. Chapman & Hall, London

    Google Scholar 

  33. Edwards D (2000) Introduction to Graphical Modelling. Springer Verlag; 2nd edition

    Google Scholar 

  34. Lauritzen S (1996) Graphical Models. Oxford University Press

    Google Scholar 

  35. Toh H, Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling. Bioinformatics 18: 287–297

    PubMed  CrossRef  CAS  Google Scholar 

  36. Wang J, Myklebost O, Hovig E (2003) Mgraph: Graphical models far microarray data analysis. Bioinformatics 19: 2210–2211

    PubMed  CrossRef  CAS  Google Scholar 

  37. Friedman N, Nachman I, Pe’er D (1999) Learning Bayesian network structure from massive datasets: The “Sparse Candidate” algorithm, UAI. pp 206–215

    Google Scholar 

  38. Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Prelic A, von Rohr P, Thiele L et al. (2004) Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol 5: R92

    PubMed  CrossRef  Google Scholar 

  39. Magwene P, Kim J (2004) Estimating genomic coexpression networks using first-order conditional independence. Genome Biol 5: R100

    PubMed  CrossRef  Google Scholar 

  40. de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565–3574

    PubMed  CrossRef  CAS  Google Scholar 

  41. Laule O, Fürholz A, Chang H, Zhu T, Wang X, Heifetz P, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    PubMed  CrossRef  CAS  Google Scholar 

  42. Bick J, Lange B (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415: 146–154

    PubMed  CrossRef  CAS  Google Scholar 

  43. Zimmermann P, Hennig L, Gruissem W (2005) Geneexpression analysis and network discovery using genevestigator. Trends Plant Sci 10: 1360–1385

    CrossRef  CAS  Google Scholar 

  44. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    PubMed  CrossRef  CAS  Google Scholar 

  45. Barkow S, Bleuler S, Prelic A, Zimmermann P, Zitzler E (2005) Bicat: A biclustering analysis toolbox. unpublished

    Google Scholar 

  46. Enright A, Ouzounis C (2001) Biolayout — an automatic graph layout algorithm for similarity visualization. Bioinformatics 17: 853–854

    PubMed  CrossRef  CAS  Google Scholar 

  47. Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. a metaboc milestone achieved through genomics. Plant Physiol 130:1079–1089

    PubMed  CrossRef  CAS  Google Scholar 

  48. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22: 86–92

    PubMed  CrossRef  CAS  Google Scholar 

  49. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M et al. (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813

    PubMed  CrossRef  CAS  Google Scholar 

  50. Mewes HW, Amid C, Arnold R, Frishman D, Goldener U, Mannhaupt G, Musterkotter M, Pagel P, Strack N, Stumpflen V et al. (2004) MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Research 32: D41–44

    PubMed  CrossRef  CAS  Google Scholar 

  51. Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: A network visualization system. Genome Biology 4: R22

    PubMed  CrossRef  Google Scholar 

  52. Breitkreutz B-J, Stark C, Tyers M (2003) The grid: The general repository for interaction datasets. Genome Biology 4: R23

    PubMed  CrossRef  Google Scholar 

  53. von Mehring C, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417: 399–403

    CrossRef  CAS  Google Scholar 

  54. Deane C, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: Two methods for the assessment of the reliability of high throughput ovservations. Mol Cell Proteomics 1: 349–356

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Schöner, D. et al. (2007). Network analysis of systems elements. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_14

Download citation