Skip to main content

On Reed’s Conjecture about ω,Δ and χ

  • Chapter
Graph Theory in Paris

Part of the book series: Trends in Mathematics ((TM))

Abstract

For a given graph G, the clique number ω(G), the chromatic number χ(G) and the maximum degree Δ(G) satisfy ω(G) ≤ χ(G) ≤ Δ(G)+1. Brooks showed that complete graphs and odd cycles are the only graphs attaining the upper bound Δ(G)+1. Reed conjectured \( \chi (G) \leqslant \left\lceil {\tfrac{{\Delta + 1 + \omega }} {2}} \right\rceil \) . In this paper we will present some partial solutions for this conjecture.

Parts of this research were performed within the RIP program (Research in Pairs) at the Mathematisches Forschungsinstitut Oberwolfach. Hospitality and financial support are gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Baetz and D.R. Wood, Brooks’ Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.

    Google Scholar 

  2. C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960), 123–160.

    MathSciNet  MATH  Google Scholar 

  3. C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1–21.

    Google Scholar 

  4. A. Beutelsbacher and P.R. Hering, Minimal graphs for which the chromatic number equals the maximal degree, Ars Combin. 18 (1984), 201–216.

    MathSciNet  Google Scholar 

  5. O.V. Borodin and A.V. Kostochka, On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density, J. Combin. Theory Ser. B 23 (1977), 247–250.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194–197.

    Article  MathSciNet  Google Scholar 

  7. P.A. Catlin, A bound on the chromatic number of a graph, Discrete Math. 22 (1978), 81–83.

    Article  MathSciNet  Google Scholar 

  8. M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, to appear in Annals of Mathematics.

    Google Scholar 

  9. M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, Recognizing Berge Graphs, Combinatorica 25 (2005), 143–187.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, Cleaning for Bergeness, manuscript (2002), 13 pages.

    Google Scholar 

  11. V. Chvátal, The smallest triangle-free, 4-chromatic, 4-regular graph, J. Combin. Theory 9, (1970), 93–94.

    MATH  Google Scholar 

  12. G. Cornuéjols, The Strong Perfect Graph Conjecture, Proc. Intern. Congress of Math. III, Invited Lecture Beijing (2002), 547–559.

    Google Scholar 

  13. G. Cornuéjols, The Strong Perfect Graph Theorem, Optima 70 (2003), 2–6.

    Google Scholar 

  14. P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.

    MathSciNet  Google Scholar 

  15. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Composito Math. 2 (1935), 463–470.

    Google Scholar 

  16. J.L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, (2004).

    Google Scholar 

  17. B. Grünbaum, A problem in graph coloring, Amer. Math. Monthly 77 (1970) 1088–1092.

    Article  MathSciNet  Google Scholar 

  18. T.R. Jensen and B. Toft, Graph colouring problems, Wiley, New York (1995).

    Google Scholar 

  19. A.R. Johansson, Asymptotic choice number for triangle-free graphs, Preprint DIMACS, (1996).

    Google Scholar 

  20. J.H. Kim, On Brooks’ theorem for sparse graphs, Combin. Prob. Comput. 4 (1995), 97–132.

    MATH  Google Scholar 

  21. A.V. Kostochka, A modification of a Catlin’s algorithm, Methods and Programs of Solutions Optimization Problems on Graphs and Networks 2 (1982), 75–79, (Russian).

    MathSciNet  Google Scholar 

  22. L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975), 269–271.

    Article  MATH  Google Scholar 

  23. S.E. Markossyan, G.S. Gasparyan and B.A. Reed, β-Perfect Graphs, J. Combin. Theory Ser. B 67 (1996), 1–11.

    Article  MathSciNet  Google Scholar 

  24. M. Molloy and B. Reed, eds., Graph Colourings and the Probabilistc Method, Algorithms and Combinatorics 23, Springer-Verlag Berlin (2002).

    Google Scholar 

  25. B. Randerath and I. Schiermeyer, A note on Brooks’ theorem for triangle-free graphs, Australas. J. Combin. 26, (2002), 3–9.

    MathSciNet  MATH  Google Scholar 

  26. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs — a survey, Graphs and Combinatorics 20(1), (2004), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  27. B.A. Reed, ωand χ, J. Graph Theory 27(4), (1998), 177–212.

    Article  MathSciNet  MATH  Google Scholar 

  28. B.A. Reed, A Strengthening of Brooks’ Theorem, J. Combin. Theory Ser. B 76(2), (1999), 136–149.

    Article  MathSciNet  MATH  Google Scholar 

  29. V.G. Vizing, Some unsolved problems in graph theory (in Russian), Uspekhi Mat. Nauk 23, (1968), 117–134, [Russian] English translation in Russian Math. Surveys 23, 125–141.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Randerath, B., Schiermeyer, I. (2006). On Reed’s Conjecture about ω,Δ and χ . In: Bondy, A., Fonlupt, J., Fouquet, JL., Fournier, JC., Ramírez Alfonsín, J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7400-6_26

Download citation

Publish with us

Policies and ethics