Skip to main content

Even Pairs in Bull-reducible Graphs

  • Chapter
  • 1273 Accesses

Part of the book series: Trends in Mathematics ((TM))

Abstract

A bull is a graph with five vertices a, b, c, d, e and five edges ab, bc, cd, be, ce. A graph G is bull-reducible if no vertex of G lies in two bulls. An even pair is a pair of vertices such that every chordless path joining them has even length. We prove that for every bull-reducible Berge graph G with at least two vertices, either G or its complementary graph \( \bar G \) has an even pair.

This research was partially supported by CNPq, CAPES (Brazil)/COFECUB (France), project number 359/01.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge. Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9 (1960) 123–160.

    MathSciNet  Google Scholar 

  2. C. Berge. Graphs. North-Holland, Amsterdam/New York, 1985.

    Google Scholar 

  3. M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković. Recognizing Berge graphs. Combinatorica 25 (2005) 143–187.

    Article  MathSciNet  Google Scholar 

  4. M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Manuscript, 2002. To appear in Annals of Mathematics.

    Google Scholar 

  5. V. Chvátal. Perfectly ordered graphs. In Topics on Perfect Graphs (Ann. Discrete Math. 21), C. Berge and V. Chvátal eds., North-Holland, Amsterdam, 1984, 63–65.

    Google Scholar 

  6. V. Chvátal, N. Sbihi. Bull-free Berge graphs are perfect. Graphs and Combinatorics 3 (1987) 127–139.

    Article  MathSciNet  Google Scholar 

  7. H. Everett, C.M.H. de Figueiredo, S. Klein, B. Reed. The perfection and recognition of bull-reducible Berge graphs. RAIRO Theoretical Informatics and Applications 39 (2005) 145–160.

    Article  Google Scholar 

  8. H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto, B.A. Reed. Even pairs. In [19], 67–92.

    Google Scholar 

  9. C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free perfect graphs. Graphs and Combinatorics 13 (1997) 31–55.

    Article  MathSciNet  Google Scholar 

  10. M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. In Topics on Perfect Graphs (Ann. Discrete Math. 21), C. Berge and V. Chvátal eds., North-Holland, Amsterdam, 1984, 325–356.

    Google Scholar 

  11. R. Hayward. Bull-free weakly chordal perfectly orderable graphs. Graphs and Combinatorics 17 (2000) 479–500.

    Article  MathSciNet  Google Scholar 

  12. R. Hayward, C.T. Hoàng, F. Maffray. Optimizing weakly triangulated graphs. Graphs and Combinatorics 5 (1989), 339–349. See erratum in vol. 6 (1990) 33–35.

    Article  MathSciNet  Google Scholar 

  13. C.T. Hoàng. Perfectly orderable graphs: a survey. In [19], 139–166.

    Google Scholar 

  14. S. Hougardy, Perfekte Graphen, PhD thesis, Institut für Ökonometrie und Operations Research, Rheinische Friedrich Wilhelms Universität, Bonn, Germany, 1991.

    Google Scholar 

  15. S. Hougardy, Even and odd pairs in line-graphs of bipartite graphs, European J. Combin.16 (1995) 17–21.

    Article  MathSciNet  Google Scholar 

  16. L. Lovász. Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2 (1972) 253–267.

    Article  MathSciNet  Google Scholar 

  17. F. Maffray, N. Trotignon. A class of perfectly contractile graphs. To appear in J. Comb. Th. B (2006) 1–19.

    Google Scholar 

  18. H. Meyniel. A new property of critical imperfect graphs and some consequences. Eur. J. Comb. 8 (1987) 313–316.

    MathSciNet  Google Scholar 

  19. J.L. Ramírez-Alfonsín, B.A. Reed. Perfect Graphs. Wiley Interscience, 2001.

    Google Scholar 

  20. B. Reed, N. Sbihi. Recognizing bull-free perfect graphs. Graphs and Combinatorics 11 (1995) 171–178.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

de Figueiredo, C.M.H., Maffray, F., Maciel, C.R.V. (2006). Even Pairs in Bull-reducible Graphs. In: Bondy, A., Fonlupt, J., Fouquet, JL., Fournier, JC., Ramírez Alfonsín, J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7400-6_14

Download citation

Publish with us

Policies and ethics