Skip to main content
  • 3806 Accesses

Abstract

In Section 18.1 the blocks method (in other words, annual maxima or Gumbel method) is applied to corrosion engineering. We are particularly interested in the service life of items exposed to corrosion. Our primary sources are the book by Kowaka et al., [37] and a review article by T. Shibata1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shibata, T. Application of extreme value statistics to corrosion. In [15], Vol. II, 327–336.

    Google Scholar 

  2. Laycock, P.J., Cottis, R.A. and Scarf, P.A. (1990). Extrapolation of extreme pit depths in space and time. J. Electrochem. Soc. 137, 64–69.

    Article  Google Scholar 

  3. With reference given to Tsuge, H. (1983). Archive of 51st Corrosion Symposium, JSCE, page 16.

    Google Scholar 

  4. Scarf, P.A. and Laycock, P.J. (1994). Applications of extreme value theory in corrosion engineering. In: [15], Vol. II, 313–320.

    Google Scholar 

  5. Komukai, S. and Kasahara, K. (1994). On the requirements for a reasonable extreme value prediction of maximum pits on hot-water-supply copper tubing. In: [15], Vol. II, 321–326.

    Google Scholar 

  6. Wicksell, S.D. (1925). The corpuscle problem I. Biometrika 17, 84–99, and Wicksell, S.D. (1926). The corpuscle problem II. Biometrika 18, 152–172.

    Google Scholar 

  7. Hlubinka, D. (2003). Stereology of extremes; shape factor of spheroids. Extremes 6, 5–24.

    Article  MATH  Google Scholar 

  8. Anderson, C.W. and Coles, S.G. (2002). The largest inclusions in a piece of steel. Extremes 5, 237–252.

    Article  Google Scholar 

  9. Murakami, Y. and Usuki, H. (1989). Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steel II: fatigue limit evaluation based on statistics for extreme values of inclusion size. Int. J. Fatigue 11, 299–307.

    Article  Google Scholar 

  10. Murakami, Y., Uemura, Y. and Kawakami, K. (1989). Some problems in the application of statistics extreme values to the estimation of the maximum size of non-metallic inclusions in metals. Transactions Japan Soc. Mechan. Engineering 55, 58–62.

    Google Scholar 

  11. Yates, J.R., Shi, G., Atkinson, H.V., Sellars, C.M. and Anderson, C.W. (2002). Fatigue tolerant design of steel components based on the size of large inclusions. Fatigue Fract. Engng. Mater. Struct. 25, 667–676.

    Article  Google Scholar 

  12. Takahashi, R. and Sibuya, M. (1996). The maximum size of the planar sections of random sheres and its application to metallurgy. Ann. Inst. Statist. Math. 48, 127–144, and Takahashi, R. and Sibuya, M. (1998). Prediction of the maximum size in Wicksell’s corpuscle problem. Ann. Inst. Statist. Math. 50, 361–377.

    Article  MATH  Google Scholar 

  13. Kötzer, S. (2006). Geometric identities in stereological particle analysis. Image Anal. Stereol. 25, 63–74.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Material Sciences. In: Statistical Analysis of Extreme Values. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7399-3_18

Download citation

Publish with us

Policies and ethics