Skip to main content

Entwurfsverfahren im Frequenzbereich

  • Chapter
Mehrgrößenregelungen

Zusammenfassung

Die im Abschn. 5. dargestellten, auf dem Zustandsraumkonzept beruhenden Entwurfsverfahren erwiesen sich als sehr erfolgreich, vor allem bei Anwendungen in der Luft- und Raumfahrt und verwandten Gebieten, da hier die für den Entwurf benötigten Zustandsraum-modeile aus den physikalischen Gesetzmäßigkeiten verhältnismäßig einfach und ausreichend genau abgeleitet werden können und die eigentliche Regelungsaufgabe tatsächlich in einer Zu-standsregelung besteht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Horowitz, J.M.; Shaked, U.: Superiority of transfer function over state-variable methods in linear time-invariant feedback system design. IEEE Trans. AC 20 (1975) S. 84–97.

    Article  MATH  Google Scholar 

  2. Rosenbrock, H.-H.: Computer-aided control systems design. London, New York, San Francisko: Academic Press 1974.

    Google Scholar 

  3. Kuon, J.F.: Multivariable frequency-domain design techniques. Alberta: Ph. D. thesis University of Alberta, Canada, 1975.

    Google Scholar 

  4. MacFarlane, A.G.J.; Postlethwaite, I.: The generalized Nyquist stability criterion and multivariable root loci. Int. J. Control 25 (1977) S. 81–127.

    Article  MathSciNet  MATH  Google Scholar 

  5. Postlethwaite, I.: A generalized inverse Nyquist stability criterion. Int. J. Control 26 (1977) S. 325–340.

    Article  MathSciNet  MATH  Google Scholar 

  6. MacFarlane, A.G.J.; Postlethwaite, I.: Characteristic frequency functions and characteristic gain functions. Int. J. Control 26 (1977) S. 265–278.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rosenbrock, H.-H.; Cook, P. A.: Stability and eigenvalues of G(s). Int. J. Control 21 (1975) S. 99–104.

    Article  MathSciNet  MATH  Google Scholar 

  8. MacFarlane, A.G.J.; Postlethwaite, I.: Extended Principle of the Argument. Int. J. Control 27 (1978) S. 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nwokah, O.J.: Stability and the eigenvalues of G(s). Int. J. Control 22 (1975) S. 125 bis 128.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramani, N.; Atherton, D.P.: A note on the stability and eigenvalues of G(s). Int. J. Control 22 (1975) S. 701–704.

    Article  MATH  Google Scholar 

  11. Schwarz, H.: Mehrfachregelungen, Bd. 1. Berlin, Heidelberg, New York: Springer-Verlag 1967.

    MATH  Google Scholar 

  12. Gille, J.C.; Pelegrin, M.; Decaulne, P.: Theorie der Regelungen, Bd. 1. Berlin: VEB Verlag Technik und München, Wien: R. Oldenbourg Verlag 1960.

    MATH  Google Scholar 

  13. MacFarlane, A.G.J.: The return-difference and return-ratio matrices and their use in the analysis and design of multivariable feedback control systems, Proc. IEE 117 (1970) S. 2037–2059.

    MathSciNet  Google Scholar 

  14. Zurmühl, R.: Matrizen. 4. Aufl. Berlin, Göttingen, Heidelberg: Springer-Verlag 1964.

    MATH  Google Scholar 

  15. Belletrutti, J.J.; MacFarlane, A.G.J.: Characteristic loci techniques in multivariable control system design. Proc. IEE 118 (1971) S. 1291–1297.

    Google Scholar 

  16. MacFarlane, A.G.J.; Belletrutti, J.J.: The characteristic locus design method. Automatica 9 (1973) S. 575–588.

    Article  MathSciNet  MATH  Google Scholar 

  17. MacFarlane, A.G.J.: Commutative Controller: A new technique for the design of multivariable control systems. Electronics Letters 6 (1970) S. 121–123.

    Article  MathSciNet  Google Scholar 

  18. Layton, J.M.: Commutative controller: a critical survey. Electronic Letters 6 (1970) S. 362–364.

    Article  Google Scholar 

  19. MacFarlane, A.G.J.: A survey of some recent results in linear multivariable feedback theory. Automatica 8 (1972) S. 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  20. Owens, D.H.: Dyadic approximation method for multivariable control systems analysis with a nuclear-reactor application. Proc. IEE 120 (1973) S. 801–809.

    Google Scholar 

  21. Owens, D.H.: Modal decoupling and dyadic transfer function matrix. Int. J. Control 23 (1976) S. 63–65.

    Article  MATH  Google Scholar 

  22. Owens, D.H.: Dyadic expansion, characteristic loci and multivariable-control-systems design. Proc. IEE 122 (1975) S. 315–320.

    MathSciNet  Google Scholar 

  23. Owens, D.H.; Marshall, S.A.: Analysis of a power station boiler model using a dyadic expansion. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems Manchester 1974. Paper S. 38.

    Google Scholar 

  24. Owens, D.H.: Dyadic approximation about a general frequency point. Electronics letters 11 (1975) S. 331–332.

    Article  Google Scholar 

  25. Belletrutti, J.J.; MacFarlane, A.G.J.: Characteristic loci techniques in multiva-riable-control-systems design. Proc. IEE 118 (1971) S. 1291–1297.

    Google Scholar 

  26. Belletrutti, J.J.: Computer aided design and the characteristic locus method. Conference on Computer Aided Design, IEE Conference Publication 96 (1973) S. 79–86.

    Google Scholar 

  27. MacFarlane, A.G.J.; Belletrutti, J.J.: The characteristic locus design method. Automatica 9 (1973) S. 575–588.

    Article  MathSciNet  MATH  Google Scholar 

  28. MacFarlane, A.G.J.; Kouvaritakis, B.: A design technique for linear multivariable feedback systems. Int.J. Control 25 (1977) S. 837–874.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosenbrock, H.H.: Design of multivariable control systems using the inverse Ny-quist array. Proc. Inst. Elect. Eng. 116 (1969) S. 1929–1936.

    Article  Google Scholar 

  30. Mee, D.H.: Specifications and criteria for multivariable control system design. Proc. of the 1976 Joint Autom. Control Conf., S. 627-633.

    Google Scholar 

  31. Ostrowski, A.M.: Note on bounds for determinants with dominant principal diagonal. Proc. Am. Math. Soc. 3 (1952) S. 26–30.

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosenbrock, H.H.: State-space and multivariable theory. Nelson, London, 1970.

    MATH  Google Scholar 

  33. Hawkins, D.J.: “Pseudodiagonalization” and the inverse-Nyquist-array method. Proc. IEE 119 (1972) S. 337–342.

    MathSciNet  Google Scholar 

  34. Leininger, G.G.: Diagonal dominance using function minimization algorithms. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems, Frede-ricton 1977, S. 105-112.

    Google Scholar 

  35. Fiedler, M.; Ptak, V.: On matrices with nonpositive off-diagonal elements and positive principal minors. Czech. Math. J. 12 (1962) S. 382–400.

    MathSciNet  Google Scholar 

  36. Araki, M.; Nwokah, O.: Bounds for closed-loop transfer functions of multivariable systems. IEEE Trans. AC 20 (1975) S. 666–670.

    Article  MathSciNet  MATH  Google Scholar 

  37. Böttinger, F.; Engell, S.: Entwurf von Zweigrößensystemen mit dem Mehrgrößen-Nyquist-Verfahren. Regelungstechnik 2 7 (1979) S. 143–150.

    Google Scholar 

  38. Munro, N.: Conversational mode C.A.D. of control systems using display terminals. IEE International Conf. on Computer Aided Design, Southampton 1972, S. 418 bis 431.

    Google Scholar 

  39. Munro, N.: Computer aided design of multivariable sampled-data systems. IEE Conference on Computer Aided Design Cambridge 1973, S. 133-148.

    Google Scholar 

  40. Allen, A.J.; Atkinson, P.: Interactive design of sampled-data control systems. IEE Conference on Computer Aided Design. Cambridge 1973, S. 141-148.

    Google Scholar 

  41. Crossley, T.R.: Envelope curves to inverse Nyquist array diagrams. Int. J. Control 22 (1975) S. 57–63.

    Article  MATH  Google Scholar 

  42. McMorran, S.M.: Design of gas-turbine controller using inverse Nyquist Method. Proc. IEE 117 (1970) S. 2050–2056.

    Google Scholar 

  43. Ahson, S.J.; Nicholson, H.: Improvement of turbo-alternator response using the inverse Nyquist array method. Int. J. Control 23 (1976) S. 657–672.

    Article  Google Scholar 

  44. Sinha, A.K.; Rutherford, D.A.: Computer-aided controller design for paper machine. Proc. IEE 123 (1976) S. 1021–1025.

    Google Scholar 

  45. Crossley, T.R.; Munro, N.; Henthorn, K.S.: Design of aircraft autostabilization systems using the inverse Nyquist array method. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems, Fredericton, 1977, S. 625-631.

    Google Scholar 

  46. Fisher, D.G.; Kuon, J.F.: Comparison and experimental evaluation of multivariable frequency-domain design techniques. Preprints of the 4. IFAC-Symposium on Multi-variable Technological Systems, Fredericton, 1977, S. 453-462.

    Google Scholar 

  47. Munro, N.: Application of the inverse Nyquist array design method. Proc. of the 1978 Joint Automatic Control Conf., S. 348-353.

    Google Scholar 

  48. Schafer, R.M.; Gejji, R.R.; Hoppner, P.W.: Frequency domain compensation of a Dyngen turbofan engine model. Proc. of the 1978 Joint Automatic Control Conf., S. 1013-1018.

    Google Scholar 

  49. Hughes, F.M.: A simplified frequency-response design approach for power-station control. Int. J. Control 25 (1977) S. 575–587.

    Article  Google Scholar 

  50. Lauckner, G.; Wilfert, H.-H.: Entwurf einer mehrvariablen Blockregelung im Frequenzbereich für einen braunkohlegefeuerten 210-MW-Kraftwerkblock auf der Basis seines experimentell ermittelten Übertragungsmodells. Vorabdrucke des XXIV. IWK, Ilmenau 1979.

    Google Scholar 

  51. Hughes, F.M.; Mallouppa, A.: Application of frequency response methods to nuclear power station oncetrough boiler control. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems, Manchester 1974. Vortrag F3.

    Google Scholar 

  52. Munro, N.; Winterbone, D.E.; Lourtie, P.M.G.: Design of a multivariable controller for an automotive gas turbine. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems, Manchester 1974. Vortrag F4.

    Google Scholar 

  53. Lauckner, G.; Wilfert, H.-H.; Förster, V.: Untersuchung der Leistungsfähigkeit eines ausgewählten Entwurfsverfahrens im Frequenzbereich für lineare Mehrfachregelungen am experimentell gewonnenen Modell eines 210-MW-Kraftwerksblockes. Forschungsbericht ZKI der AdW 1979.

    Google Scholar 

  54. McMorran, P.D.: Parameter sensitivity and inverse Nyquist method. Proc. IEE 118 (1971) S. 802–804.

    Google Scholar 

  55. Hawkins, D.J.: “Techniques for the design of multivariable control systems”. Ph.D. Thesis, Control System Control, Institute of Science and Technology, The University of Manchester 1972.

    Google Scholar 

  56. Ibrahim, T.A.S.; Munro, N.: Design of sampled-data multivariable control systems using the inverse Nyquist array. Int. J. Control 22 (1975) S. 297–311.

    Article  MATH  Google Scholar 

  57. Ahson, S.J.; Nicholson, H.: Inverse-Nyquist-array design with minimum sensitivity. Proc. IEEE 123 (1976) S. 457–461.

    Google Scholar 

  58. Schafer, R.M.; Sain, M.K.: Input compensation for dominance of turbofane models. Proceedings of the International Forum on Alternatives for Multivariable Control. Chicago, Ill. 13./14. Oct. 1977, S. 45-78.

    Google Scholar 

  59. Wilfert, H.-H.; Marschner, H.-H.; Hertel, U.: Experimentelle Identifikation eines 210-MW-Kraftwerksblockes als Mehrgrößensystem, msr 21 (1978) S. 567–572.

    Google Scholar 

  60. Mayne, D.Q.: The design of linear multivariable systems. Automatic a 9 (1973) S. 201–207.

    Article  MATH  Google Scholar 

  61. Mayne, D.Q.; Chuang, S.C.: The sequential return difference method for designing linear multivariable systems. IEE Conference on Computer Aided Design Cambridge, 1973. S. 87-93.

    Google Scholar 

  62. Rosenbrock, H.-H.: The stability of multivariable systems. IEEE AC 17 (1972) S. 105–107.

    Article  MathSciNet  MATH  Google Scholar 

  63. Daly, K.C.; Chuang, S.C.: Design of multivariable digital control system using the sequential return difference method. Proc. IEE 123 (1976) S. 98–100.

    Google Scholar 

  64. Owens, D.H.: Dyadic modification to sequential technique for multivariable-control-systems design. Electronics letters 10 (1974) S. 25–26.

    Article  MathSciNet  Google Scholar 

  65. Snaked, U.; MacFarlane, A.G.J.: Design of linear multivariable systems for stability under large parameter uncertainty. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems Fredericton 1977. S. 149-157.

    Google Scholar 

  66. Mayne, D.Q.: Sequential design of linear multivariable systems. Proc. IEE 126 (1979) S. 558–572.

    Google Scholar 

  67. Leininger, G.G.: Diagonal dominance for multivariable Nyquist array methods using Function Minimization. Automatica 15 (1979) S. 339–345.

    Article  MATH  Google Scholar 

  68. Unbehauen, H.: Rechnergestützter Entwurf von Mehrgrößenregelungen im Frequenzbereich. Vorabdrucke 24. IWK Ilmenau 1979, Heft 1, S. 99-106.

    Google Scholar 

  69. Damert, K.; Greeske, H.; Reinig, G.; Werner, B.: Anwendung verschiedener Identifikationsverfahren für Steuerungsobjekte in der chemischen Technologie, In: Autorenkollektiv “Einsatzvorbereitung von Prozeßrechnern”. Berlin: Akademie-Verlag 1978, S. 81–135.

    Google Scholar 

  70. Postlethwaite, J.: Algebraic-function theory in the analysis of multivariable feedback systems. Proc. IEE 126 (1979) S. 555–562.

    MathSciNet  Google Scholar 

  71. Owens, D.H.: Dyadic expansions and their applications. Proc. IEE 126 (1979) S. 563 bis 567.

    MathSciNet  Google Scholar 

  72. Kouvaritakis, B.A.: Theory and practice of the characteristic locus design method. Proc. IEE 126 (1979) S. 542–548.

    MathSciNet  Google Scholar 

  73. Ovens, H.: Dyadic modification to sequential technique for multivariable control systems design. Electronics letters 10 (1974) S. 25–26.

    Article  Google Scholar 

  74. Chuang, S.C.: Design of linear multivariable systems by sequential return difference method. Proc. IEE 121 (1974) S. 745–747.

    Google Scholar 

  75. Rosenbrock, H.H.: On the design of linear multivariable control systems. Proc. of the in. IFAC-Congress London 1966, Vol. 1, paper 1.A.

    Google Scholar 

  76. Unbehauen, H.; Engell, S.: Anwendung des Mehrgrößen-Nyquist-Verfahren s auf ein Dampferzeugermodell. Regelungstechnik 27 (1979) S. 250–259.

    Google Scholar 

  77. Ostrowski, A.: Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helveticii 10 (1937).

    Google Scholar 

  78. Nwokah, O. J.: A recurrent issue on the extended Nyquist array. Int. J. Control 31 (1980) S. 609–614.

    Article  MathSciNet  MATH  Google Scholar 

  79. Lauckner, G.: Analyse und Entwurf von Mehrgrößenregelungen im Frequenzbereich unter besonderer Berücksichtigung von Allpaßverhalten der Regelstrecke. Diss. ATU Dresden, eingereicht 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 VEB Verlag Technik, Berlin

About this chapter

Cite this chapter

Korn, U., Wilfert, HH. (1982). Entwurfsverfahren im Frequenzbereich. In: Mehrgrößenregelungen. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9489-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9489-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9490-4

  • Online ISBN: 978-3-7091-9489-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics