Skip to main content

Molecular Potentials and Relativistic Effects

  • Conference paper
Few-Body Problems in Physics ’95

Part of the book series: Few-Body Systems ((FEWBODY,volume 8))

Abstract

The Fock-space coupled-cluster method, a powerful and efficient scheme for the incorporation of electron correlation in atomic and molecular systems, is described, and representative applications are reviewed. The molecular potentials of alkali-metal dimers in their ground and excited states are calculated. A relativistic coupled-cluster method, starting from the four-component DiracCoulomb-Breit Hamiltonian, is applied to calculate transition energies of heavy atoms (Au is given as an example) and to determine the ground-state configurations (not known experimentally) of the superheavy elements 104 and 111. These are found to be different from the ground states of elements above them in the periodic table, due to relativistic effects. Finally, using a Douglas-Kroll transformation of the relativitic wave function, the potential function of AuH is investigated. Very good agreement with known experimental data is obtained in all cases. Large relativistic effects on the structure and spectra of heavy atoms and molecules are observed. Nonadditivity of relativistic and correlation energies is demonstrated.

Supported by the U.S.-Israel Binational Science Foundation and by the German-Israeli Foundation for Scientific Research and Development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hubbard: Proc. Roy. Soc. (London) A240, 539 (1957);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. Hubbard: ibid. A243, 336 (1958);

    MathSciNet  MATH  Google Scholar 

  3. F. Coester: Nucl. Phys. 7, 421 (1958);

    Article  Google Scholar 

  4. F. Coester, H. Kümmel: Nucl. Phys. 17, 477 (1960);

    Article  MATH  Google Scholar 

  5. H. Kümmel, K.H. Lührmann, J.G. Zabolitzky: Phys. Rept. 36, 1 (1978).

    Article  ADS  Google Scholar 

  6. J. Čížek: J. Chem. Phys. 45, 4256 (1969);

    Google Scholar 

  7. J. Čížek: Adv. Chem. Phys. 14, 35 (1969);

    Article  Google Scholar 

  8. J. Paldus, J. Čížek, I. Shavitt: Phys. Rev. A 5, 50 (1972);

    Article  ADS  Google Scholar 

  9. J. Paldus: J. Chem. Phys. 67, 303 (1977).

    Article  ADS  Google Scholar 

  10. R.J. Bartlett: J. Phys. Chem. 93, 1697 (1989).

    Article  Google Scholar 

  11. D. Mukherjee, S. Pal: Adv. Quantum Chem. 20, 291 (1989);

    Article  ADS  Google Scholar 

  12. U. Kaldor: Theor. Chim. Acta 80, 427 (1991);

    Article  Google Scholar 

  13. C.M.L. Rittby, R.J. Bartlett: ibid. 80, 469 (1991); and references cited therein.

    Google Scholar 

  14. E. Ilyabaev, U. Kaldor: J. Chem. Phys. 97, 8455 (1992).

    Article  ADS  Google Scholar 

  15. E. Eliav, U. Kaldor, Y. Ishikawa: Int. J. Quantum Chem. Symp. 28, 205 (1994).

    Article  Google Scholar 

  16. E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 49, 1724 (1994).

    Article  ADS  Google Scholar 

  17. E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 50, 1121 (1994).

    Article  ADS  Google Scholar 

  18. E. Eliav, U. Kaldor, Y. Ishikawa: Chem. Phys. Lett. 222, 82 (1994).

    Article  Google Scholar 

  19. E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 51, 225 (1995).

    Article  ADS  Google Scholar 

  20. E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A in press.

    Google Scholar 

  21. E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. Lett. 74, 1079 (1995).

    Article  ADS  Google Scholar 

  22. E. Eliav, U. Kaldor, P. Schwerdtfeger, B.A. Heß, Y. Ishikawa: Phys. Rev. Lett. 73, 3203 (1994).

    Article  ADS  Google Scholar 

  23. M. Douglas, N.M. Kroll: Ann. Phys. (NY) 82, 89 (1974).

    Article  ADS  Google Scholar 

  24. B.A. Heß: Phys. Rev. A 32, 756 (1985);

    Article  ADS  Google Scholar 

  25. B.A. Heß: ibid. 33, 3742 (1986).

    Google Scholar 

  26. G. Jansen, B.A. Heß: Phys. Rev. A 39, 6016 (1989).

    Article  ADS  Google Scholar 

  27. R. Samzow, B.A. Heß, G. Jansen: J. Chem. Phys. 96, 1227 (1992).

    Article  ADS  Google Scholar 

  28. U. Kaldor, B.A. Heß: Chem. Phys. Lett. 230, 1 (1994).

    Article  ADS  Google Scholar 

  29. I. Lindgren, J. Morrison: Atomic Many-Body Theory, 2nd ed. Berlin: Springer-Verlag 1986.

    Google Scholar 

  30. J. Sucher: Phys. Rev. A 22, 348 (1980); Phys. Scr. 36, 271 (1987).

    Google Scholar 

  31. I. Lindgren: In Many-Body Methods in Quantum Chemistry, (Lecture Notes in Chemistry vol. 52), ed. U. Kaldor, p. 293. Heidelberg: Springer-Verlag 1989;

    Google Scholar 

  32. I. Lindgren: Nucl. Instrum. Methods Phys. Res. Sec. B 31, 102 (1988).

    Google Scholar 

  33. Y. Ishikawa, H.M. Quiney: Phys. Rev. A 47, 1732 (1993);

    Article  ADS  Google Scholar 

  34. Y. Ishikawa: ibid. 42, 1142 (1990);

    MathSciNet  Google Scholar 

  35. Y. Ishikawa, R. Barrety, R.C. Binning: Chem. Phys. Lett. 121, 130 (1985).

    Article  ADS  Google Scholar 

  36. U. Kaldor: Chem. Phys. 140, 1 (1990).

    Article  ADS  Google Scholar 

  37. U. Kaldor: Israel J. Chem. 31, 345 (1991).

    Google Scholar 

  38. E. Ilyabaev, U. Kaldor: J. Chem. Phys. 98, 7126 (1993).

    Article  ADS  Google Scholar 

  39. G. Hose, U. Kaldor: J. Phys. B 12, 3827 (1979);

    Article  ADS  Google Scholar 

  40. B. Jeziorski, H.J. Monkhorst: Phys. Rev. A 24, 1668 (1981).

    Article  ADS  Google Scholar 

  41. P. Pyykkö: In The Effects of Relativity in Atoms, Molecules, and the Solid State, ed. S. Wilson, I.P. Grant, B.L. Gyorffy, p. 1. New York: Plenum Press 1991.

    Google Scholar 

  42. C.E. Moore: Atomic energy levels, Natl. Bur. Stand. (U.S.) Circ. No. 467. Washington: U.S. GPO 1948.

    Google Scholar 

  43. O.L. Keller: Radiochim. Acta 37, 169 (1984).

    Google Scholar 

  44. V.A. Glebov, L. Kasztura, V.S. Nefedov, B.L. Zhuikov: Radiochim. Acta 46, 117 (1989);

    Google Scholar 

  45. E. Johnson, B. Fricke, O.L. Keller, C.W. Nestor Jr., T.C. Tucker: J. Chem. Phys. 93, 8041 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Kaldor, U. (1995). Molecular Potentials and Relativistic Effects. In: Guardiola, R. (eds) Few-Body Problems in Physics ’95. Few-Body Systems, vol 8. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9427-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9427-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9429-4

  • Online ISBN: 978-3-7091-9427-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics