Skip to main content

Magnetic Resonance Diffusion-Weighted Imaging: Sensitivity and Apparent Diffusion Constant in Stroke

  • Conference paper
Brain Edema IX

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 60))

Summary

Magnetic resonance diffusion-weighted imaging (MR-DWI) is sensitive to the diffusibility of water and may offer characterization and anatomical localization of stroke leading to early tailored therapeutic intervention. We compared DWI, the apparent diffusion constant (ADC), and autoradiographic cerebral blood flow (CBF) in a model of focal cerebral ischemia in the rat.

Sprague-Dawley rats were embolized with a single silicone cylinder injected into the internal carotid artery. Both common carotids were permanently ligated. The animals were anesthetized (isoflurane in O2), and paralyzed (gallamine). MR-DWI were obtained with a GE 4.7 T magnet (TE = 3 s, TR = 80 msec, b = 2393 · l(h3 mm2/ s, slice thickness 3 mm). DWI and CBF autoradiograms were compared visually. ADC was assessed in various regions, including ischemic cortex and a region homologous to ischemic cortex. Imaging times from stroke onset were 50 ± 6 min (mean ± SEM) for DWI, 185 ± 17 min for a second DWI. CBFwas determined at 258 ± 15 min.

The specificity was 100% at both 50 min and 185 min, indicating that there were no false positives; in 3 animals ischemia was not present. However, the sensitivity analysis indicated that early DWI yields some false negatives: at 50 min the sensitivity was 60%. We attribute our result of low early sensitivity to small infarcts in relation to the slice thickness. Later, at 185 min, sensitivity was 100%. The first ADCs were higher than the second ADC values in ischemic cortex.

For infarcts larger than the slice thickness, early MR-DWI is highly sensitive for imaging evolving ischemia. Unlike other imaging methodologies (e.g. T2 or CT Scan), MR-DWI will contribute to the diagnosis and treatment of early stages of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker L L, Kucharczyk J, Sevick RJ, Mintorovitch J, Moseley M E (1991) Recent advances in MR imaging/spectroscopy of cerebral ischemia. Am J Roentgenol 156: 1133–1143

    CAS  Google Scholar 

  2. Benveniste H, Hedlund L W, Johnson G A (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusionweighted magnetic resonance microscopy. Stroke 23: 746–754

    Article  PubMed  CAS  Google Scholar 

  3. Kaneko D, Nakamura N, Ogawa T (1985) Cerebral infarction in rats using homologous blood emboli: development of a new experimental model. Stroke 16: 76–84

    Article  PubMed  CAS  Google Scholar 

  4. Knight R A, Ordidge R J, Halpern J A, Chopp M, Rodolosi L C, Peck D (1991) Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22: 802–808

    Article  PubMed  CAS  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  6. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161: 401–407

    PubMed  Google Scholar 

  7. Le Bihan D, Moonen C T, van Zijl P C, Pekar J, DesPres D (1991) Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr 15: 19–25

    Article  PubMed  Google Scholar 

  8. Mazziotta J C, Phelps M E, Plummer D, Kuhl D E (1981) Quantitation in positron emission computed tomography: 5. physical-anatomical effects. J Comput Assist Tomogr 5: 734–743

    Article  PubMed  CAS  Google Scholar 

  9. Minematsu K, Fisher M, Sotak C H, Davis MA, Fiandaca M S (1992) Diffusion-weighted magnetic resonance imaging: rapid and quantitative detection of focal brain ischemia. Neurology 42: 235–240

    PubMed  CAS  Google Scholar 

  10. Mintorovitch J, Cohen Y, Chileuitt L, Shimizu H, Weinstein P, Moseley M E (1989) Early detection of regional cerebral ischemia and the effect of reperfusion on diffusion-weighted MRI in rats. In: Works in Progress — Society of Magnetic Resonance in Medicine. Society of Magnetic Resonance in Medicine, Berkeley, pp 1002

    Google Scholar 

  11. Mintorovitch J, Moseley M E, Chileuitt L, Shimizu H, Cohen Y, Weinstein P R (1991) Comparison of diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med 18: 39–50

    Article  PubMed  CAS  Google Scholar 

  12. Moseley M E, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 14: 330–346

    Article  PubMed  CAS  Google Scholar 

  13. Moseley M E, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusionweighted M R imaging of acute stroke: correlation with T2weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR 11:423–429

    PubMed  CAS  Google Scholar 

  14. Perez-Trepichio A D, Furlan A J, Little J R, Jones S C (1992) Hydroxyethyl starch 200/0.5 reduces infarct volume following embolic stroke in the rat. Stroke 23: 1782–1790

    Article  PubMed  CAS  Google Scholar 

  15. Sakurada O, Kennedy C, Jehle J, Brown J D, Carbin G L, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am J Physiol 234: H59–H66

    PubMed  CAS  Google Scholar 

  16. Schuier F J, Hossmann K-A (1980) Experimental brain infarcts in cats. IL Ischemic brain edema. Stroke 11: 593–601

    Article  PubMed  CAS  Google Scholar 

  17. Takeda T, Shima T, Okada Y, Matsumura S, Nishi Y, Uozumi T (1987) Pathophysiological studies of cerebral ischemia produced by silicone cylinder embolization in rats. J Cereb Blood Flow Metab 7 [Suppl 1]: S66

    Google Scholar 

  18. Xue M, Ng T C, Jones S C, Perez-Trepichio AD, Modic M (1991) 1H NMR spectroscopic imaging with very small voxel size for the detection of metabolic injury of stroke in rat brain. In: Society of Magnetic Resonance in Medicine, 10th Annual Meeting, Book of abstracts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Jones, S.C., Perez-Trepichio, A.D., Xue, M., Furlan, A.J., Awad, I.A. (1994). Magnetic Resonance Diffusion-Weighted Imaging: Sensitivity and Apparent Diffusion Constant in Stroke. In: Ito, U., et al. Brain Edema IX. Acta Neurochirurgica, vol 60. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9334-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9334-1_56

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9336-5

  • Online ISBN: 978-3-7091-9334-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics