Skip to main content

Monoamine oxidase and catecholamine metabolism

  • Conference paper
Book cover Amine Oxidases: Function and Dysfunction

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 41))

Summary

The enzyme which has come to be known as monoamine oxidase was discovered in liver over 60 years ago as tyramine oxidase (Hare, 1928). Almost 10 years later, Blaschko et al. (1957a,b) established that epinephrine, norepinephrine and dopamine were also substrates for this enzyme. Zeller (1938) distinguished monoamine oxidase as different from several other amine oxidases, such as diamine oxidase. Although it was generally assumed that catecholamines were metabolized by MAO, this was not established until isotopically labelled epinephrine and an MAO inhibitor became available. Schayer (1951) found that after administration of N-methyl-14C-epinephrine, only about 50% of the radioactivity appeared in the urine, whereas when the 14C label was incorporated into the β-position on the side chain, almost all of the radioactivity could be recovered. One year later, Zeller et al. (1952) discovered that isonicotinic acid hydrazide (iproniazid) inhibited MAO. When animals pretreated with the MAO inhibitor were administered N-methyl-14C-epinephrine, almost all of the radioactivity was recovered (Schayer et al., 1955), indicating that the enzyme was responsible for the metabolism of about half of the administered catecholamine. Schayer et al. (1952, 1953) had found that five urinary metabolite products of β-labelled-14C-norepinephrine could be separated by paper chromatography, but the chemical structures of these compounds were not known.

Armstrong et al. (1957) showed that 3-methoxy-4-hydroxymandelic acid (vanillyl mandelic acid, VMA) was the major metabolite of norepinephrine and Shaw et al. (1957) demonstrated that large amounts of homovanillic acid (HVA) were excreted in urine after administration of 3,4-dihydroxy-phenylalanine (DOPA). These observations led Axelrod to examine the possibility that O-methylation might precede deamination and to his discovery of catechol-O-methyl transferase (Axelrod, 1957, 1959). At that time it became apparent that there were two possible routes for metabolism of norepinephrine to VMA — either deamination followed by O-methylation or O-methylation and subsequent deamination. The relative roles of these two pathways in terminating the physiological actions of catecholamines then became a focus of attention. Biochemical methods were used to access directly the relative importance of the two metabolic pathways. Physiological methods, based on the effects of drugs which alter metabolism of the catecholamine, were used to examine the role of MAO and COMT in terminating the actions of administered or endogenously released catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anden NE, Grabowska-Anden M (1983) Formation of deaminated metabolites of dopamine in noradrenaline neurons. Naunyn Schmiedebergs Arch Pharmacol 324: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Grabowska-Anden M, Lindgren S, Oweling M (1985) Very rapid turnover of dopamine in noradrenaline cell body regions. Naunyn Schmiedebergs Arch Pharmacol 329: 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong MD, McMillan A, Shaw KNF (1957) 3-Methoxy-4-hydroxy-D-mandelic acid, a urinary metabolite of norepinephrine. Biochem Biophys Acta (Amst) 25: 422–423.

    Article  CAS  Google Scholar 

  • Axelrod J (1957) O-Methylation of catecholamines in vitro and in vivo. Science 126: 400–401.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1959) The metabolism of catecholamines in vivo and in vitro. Pharmacol Rev 11(Part 2): 402–408.

    PubMed  CAS  Google Scholar 

  • Axelrod J, Laroche MJ (1959) Inhibitor of O-methylation of epinephrine and norepinephrine in vitro and in vivo. Science 130: 800–801.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J, Whitby LG, Hertting G (1961) Effect of psychoactive drugs on the uptake of H3-norepinephrine by tissues. Science 133: 338–384.

    Article  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Haas V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to madopar treatment in Parkinson’s disease: a long term study. J Neural Transm 64: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MBH, Linauer W (1975) Potentiation of antikinetic effect after L-dopa treatment by an inhibitor of MAO-B, L-deprenyl. J Neural Transm 36: 303–323.

    Article  PubMed  CAS  Google Scholar 

  • Blaschko H (1957a) Metabolism and storage of biogenic amines. Experimentia (Basel) 13: 9–12.

    Article  CAS  Google Scholar 

  • Blaschko H (1957b) Formation of catecholamines in the animal body. Br Med Bull 13: 162–165.

    PubMed  CAS  Google Scholar 

  • Brown GL, Gillespie JS (1957) Output of sympathetic transmitter from the spleen of the cat. J Physiol (Lond) 138: 81–102.

    CAS  Google Scholar 

  • Celander O, Mellander S (1955) Elimination of adrenaline and noradrenaline from circulating blood. Nature (Lond) 176: 973.

    Article  CAS  Google Scholar 

  • Corne SJ, Graham JDP (1957) Effect of inhibition of monoamine oxidase in vivo on administered adrenaline, noradrenaline, tyramine and serotonin. J Physiol (Lond) 135: 339–349.

    CAS  Google Scholar 

  • Crane GE (1957) Iproniazid (Marsilid) phosphate: a therapeutic agent for mental disorders and debilitating illness. Psychiat Res Rep Am Psychiat Ass 8: 142–152.

    CAS  Google Scholar 

  • Crout JR (1961) Effect of inhibiting both catechol-O-methyl transferase and monoamine oxidase on cardiovascular responses to norepinephrine. Proc Soc Exp Biol 108: 482–484.

    PubMed  CAS  Google Scholar 

  • Eisenhofer G, Goldstein DS, Stull R, Ropchak TG, Keiser HR, Kopin IJ (1987) Dihydroxyphenylglycol and dihydroxymandelic acid during intravenous infusions of noradrenaline. Clin Sci 73: 123–127.

    PubMed  CAS  Google Scholar 

  • Eiesnhofer G, Ropchak TG, Stull RW, Goldstein DS, Keiser HR, Kopin IJ (1987) Dihydoxyphenylglycol and intraneuronal metabolism of endogenous and exogenous norepinephrine in the rat vas deferens. J Pharmacol Exp Ther 142: 547–553.

    Google Scholar 

  • Griesemer EC, Barsky J, Dragstedt CA, Wells JA, Zeller EA (1953) Potentiating effect of iproniazid on the pharmacological actions of sympathomimetic amines. Proc Soc Exp Biol 84: 699–701.

    PubMed  CAS  Google Scholar 

  • Goldstein DS, Eisenhofer G, Stull R, Folio CJ, Kerier HR, Kopin IJ (1988) Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Invest 81: 213–220.

    Article  PubMed  CAS  Google Scholar 

  • Graefe KH, Bonisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic neurons. In: Catecholamines, vol 90. Springer, Berlin Heidelberg New York Tokyo, pp 193–245.

    Google Scholar 

  • Hare MLC (1928) Tyramine oxidase. A new enzyme system in liver. Biochem J 22: 968–979.

    PubMed  CAS  Google Scholar 

  • Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic nerve endings. Nature 192: 172–173.

    Article  PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain. Biochem Pharmacol 17: 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Heninger GR, Roth RH (1981) Brain contribution to the haloperidolinduced increase in plasma homovanillic acid. Eur J Pharmacol 71: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Klein NS (1958) Clinical experience with iproniazid (Marsilid). J Clin Exp Psychopathol 19: 72–78.

    Google Scholar 

  • Knoll J (1978) The possible mechanisms of action of (-)-deprenyl in Parkinson’s disease. J Neural Transm 43: 177–198.

    Article  PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408.

    PubMed  CAS  Google Scholar 

  • Kopin IJ (1960) Technique for the study of alternative metabolic pathways: epinphrine metabolism in man. Science 131: 1372–1374.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1968) False adrenergic transmitters. Ann Rev Pharmacol 8: 377–394.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 37: 333–364.

    PubMed  CAS  Google Scholar 

  • Kopin IJ, Axelrod J (1960) 3,4-Dihydroxyphenylglycol, a metabolite of epinephrine. Arch Biochem Biophys 89: 148–149.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Axelrod J (1963) The role of monoamine oxidase in the release and metabolism of norepinephrine. Ann NY Acad Sci 107: 848–855.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Axelrod J, Gordon EK (1961) The metabolic fate of H3-epinephrine and C14-metanephrine in the rat. J Biol Chem 136: 2109–2113.

    Google Scholar 

  • Kopin IJ, Fischer JE, Musacchio J, Horst WD (1964) Evidence for a false neurochemical transmitter as a mechanism for the hypotensive effect of monoamine oxidase inhibitors. Proc Natl Acad Sci 52: 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Gordon EK (1962) Metabolism of norepinephrine-H3 released by tyramine and reserpine. J Pharmacol 138: 351–357.

    CAS  Google Scholar 

  • Kopin IJ, Gordon EK (1963) Metabolism of administered and drug-released norepinephrine-7-H3 in the rat. J Pharmacol 140: 207–216.

    CAS  Google Scholar 

  • Kopin IJ, Harvey-White J, Bankiewicz K (1988a) A new approach to biochemical evaluation of brain dopamine metabolism. Cell Mol Neurobiol 8: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Hertting G, Gordon EK (1962) Fate of norepinephrine-H3 in the isolated perfused rat heart. J Pharmacol Exp Ther 138: 34–40.

    PubMed  CAS  Google Scholar 

  • Kopin IJ, Oliver JA, Polinsky, RJ (1988b) Relationship between urinary excretion of homovanillic acid and norepinephrine metabolites in normal subjects and patients with orthostatic hypotension. Life Sci 43: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Weise VK (1968) Effect of reserpine and metaraminol on excretion of homovanillic acid and 3-methoxy-4-hydroxyphenylglycol in the rat. Biochem Pharmacol 17: P1461–1464.

    Article  Google Scholar 

  • Kopin IJ, Zukowska-Grojec Z, Bayorh MA, Goldstein DS (1984) Estimation of intra-synaptic noradrenaline concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol 325: 298–305.

    Article  PubMed  CAS  Google Scholar 

  • LaBrosse EH, Axelrod J, Kety SS (1958) O-Methylation, the principal route of metabolism of epinephrine in man. Science 128: 593–594.

    Article  PubMed  CAS  Google Scholar 

  • Langeloh A, Bonisch H, Trendelenburg U (1987) The mechanism of 3H-noradrenaline releasing effect of various substrates of uptake 1: multifactorial induction of outward transport. Naunyn Schmiedebergs Arch Pharmacol 336: 603–610.

    Google Scholar 

  • Maas JW, Contreras SA, Bowden CL, Weintraub SE (1985) Effects of debrisoquin on CSF and plasma HVA concentrations in man. Life Sci 36: 165–176.

    Article  Google Scholar 

  • Majewski H, Hedler L, Steppeler A, Starke K (1982) Metabolism of endogenous and exogenous noradrenaline in the rabbit perfused heart. Naunyn Schmiedebergs Arch Pharmacol 319: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Marley E, Blackwell B (1970) Interactions of monoamine oxidase inhibitors, amines and foodstuffs. Adv Pharmacol Chemother 8: 186–239.

    Google Scholar 

  • Pettinger WA, Korn A, Spieger H, Solomon HM, Porcelinko R, Abrams WB (1969) Debrisoquin, a selective inhibitor of intraneuronal monoamine oxidase in man. Clin Pharmacol Ther 10: 667–674.

    PubMed  CAS  Google Scholar 

  • Riddle MA, Leckman JF, Cohen DJ, Anderson M, Ort SI, Caruso KA, Shaywitz BA (1986) Assessment of central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration. J Neural Transm 67: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Schayer RW (1951) Metabolism of β-C14 DL-adrenaline. J Biol Chem 189: 301–306.

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL, Davis KJ, Kobayashi Y (1955) Role of monoamine oxidase in noradrenaline metabolism. Am J Physiol 182: 285–286.

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL, Kaplan EH (1952) Metabolism of adrenaline containing isotopic carbon (II). J Biol Chem 198: 545–551.

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL, Kennedy J (1953) Metabolism of epinephrine containing isotopic carbon (III). J Biol Chem 202: 425–430.

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ, Kety S (1967) Biogenic amines and emotion. Science 156: 21–55.

    Article  PubMed  CAS  Google Scholar 

  • Shaw KNF, McMillan A, Armstrong MD (1957) Metabolism of 3,4-dihydroxypheny-lalanine. J Biol Chem 226: 255–266.

    PubMed  CAS  Google Scholar 

  • Spector S, Prockop D, Shore PA, Brodie BB (1958) Effect of iproniazid on brain levels of norepinephrine and serotonin. Science 127: 704–705.

    Article  CAS  Google Scholar 

  • Spector S, Shore PA, Brodie BB (1960) Biochemical and pharmacological effects of monoamine oxidase inhibitors, iproniazid, 1-phenyl-2-hydrazine propane (JB 516) and 1-phenyl-3-hydrazinobutane. J Pharmacol Exp Ther 128: 15–21.

    PubMed  CAS  Google Scholar 

  • Starke K, Hedler L, Steppeler A (1981) Metabolism of endogenous and exogenous noradrenaline in guinea-pig atria. Naunyn Schmiedebergs Arch Pharmacol 317: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg DE, Heninger GR, Heninger RH (1983) Plasma homovanillic acid as an index of brain dopamine metabolism: enhancement with debrisoquin. Life Sci 32: 2447–2452.

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Maas JW, Hattox SE, Landis H (1980) Catecholamine metabolites in human plasma as indices of brain function: effects of debrisoquin. Life Sci 27: 1857–1862.

    Article  PubMed  CAS  Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 41: 519–522.

    Article  Google Scholar 

  • The Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371.

    Article  Google Scholar 

  • Vogt M (1959) Catecholamines in brain. Pharmacol Rev 11: 483.

    PubMed  CAS  Google Scholar 

  • Wylie DW, Archer S, Arnold A (1960) Augmentation of pharmacological properties of catecholamines by O-methyl transferase inhibitors. J Pharmacol Exp Ther 130: 239–244.

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Finberg JPM, Tipton KF (1988) Monoamine oxidase. In: Catecholamines, vol 90. Springer, Berlin Heidelberg New York Tokyo, pp 117–192.

    Google Scholar 

  • Zeller EA (1938) Über den enzymatischem Abbau von Histamin und Diaminen. Helv Chim Acta 21: 880–890.

    Article  CAS  Google Scholar 

  • Zeller EA, Barsky J, Berman ER, Fouts JR (1952) Action of isonicotinic acid hydrazide and related compounds on enzymes of brain and other tissues. J Lab Clin Med 40: 965–966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Kopin, I.J. (1994). Monoamine oxidase and catecholamine metabolism. In: Tipton, K.F., Youdim, M.B.H., Barwell, C.J., Callingham, B.A., Lyles, G.A. (eds) Amine Oxidases: Function and Dysfunction. Journal of Neural Transmission, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9324-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9324-2_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82521-1

  • Online ISBN: 978-3-7091-9324-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics