Skip to main content

Can our knowledge of monoamine oxidase (MAO) help in the design of better MAO inhibitors?

  • Conference paper
Amine Oxidases: Function and Dysfunction

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 41))

Summary

This paper presents a rapid overview of the mechanism by which monoamine oxidase (MAO) catalyzes the deamination of its substrates, and highlights the stereoselective nature of the active site of the enzyme. With the help of a few selected examples it is also discussed which structural factors are thought to have a preponderant influence on the affinity and selectivity of molecules towards the active site of either form of MAO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai Y, Toyoshima Y, Kinemuchi H (1986) Studies of monoamine oxidase and semi-carbazide-sensitive amine oxidase. II. Inhibition by a-methylated substrate-analogue monoamines, α-methyltryptamine, β-methylbenzylamine and two enantiomers of β-methylbenzylamine. Jpn J Pharmacol 41: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Berger PA, Barchas JD (1977) Monoamine oxidase inhibitors. Psychopharmacol Ser 2: 1173–1216.

    Google Scholar 

  • Burrows GD, Da Prada M (1989) Reversible MAO-A inhibitors as antidepressants. J Neural Transm [Suppl] 28.

    Google Scholar 

  • Cesura AM, Galva MD, Imhof R, Kyburz E, Picotti GB, Da Prada M (1989) [3H]Ro 19-6327: a reversible ligand and affinity labelling probe for monoamine oxidase-B. Eur J Pharmacol 162: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Cesura AM, Bös M, Galva MD, Imhof R, Da Prada M (1990) Characterization of the binding of [3H]Ro 41-1049 to the active site of human monoamine oxidase-A. Mol Pharmacol 37: 358–366.

    PubMed  CAS  Google Scholar 

  • Cesura AM, Kettler R, Imhof R, Da Prada M (1992) Mode of action and characteristics of monoamine oxidase-A inhibition by moclobemide. Psychopharmacology 106: S15–S16.

    Article  PubMed  CAS  Google Scholar 

  • Chrisp P, Mammen GJ, Sorkin EM (1991) Selegiline. A review of its pharmacology, symptomatic benefits and protective potential in Parkinson’s disease. Drugs Aging 1: 228–248.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (1990) Monoamine oxidase and oxidative stress at dopaminergic synapses. J Neural Transm [Suppl] 32: 229–238.

    CAS  Google Scholar 

  • Curet O, Damoiseau G, Aubin N (1992) Biochemical profile of befloxatone, a new reversible MAO-A inhibitor. Clin Neuropharmacol 15[Suppl 1]: 428B.

    Google Scholar 

  • Damsma G, Boisvert DP, Mudrick LA, Wenkstern D, Fibiger HC (1990) Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin, and their metabolites in the rat striatum as determined by in vivo microdialysis. J Neurochem 54: 801–808.

    Article  PubMed  CAS  Google Scholar 

  • Da Prada M, Kettler R, Keller HH, Cesura AM, Richards JG, Saura Marti J, Muggli-Maniglio D, Wyss P-C, Kyburz E, Imhof R (1990) From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J Neural Transm [Suppl] 29: 279–292.

    Google Scholar 

  • Dosiert P (1984) Myth and reality of the classical MAO inhibitors. Reasons for seeking a new generation. In: Tipton KF, Dostert P, Strolin Benedetti M (eds) Monoamine oxidase and disease. Prospects for therapy with reversible inhibitors. Academic Press, London, pp 9–24.

    Google Scholar 

  • Dostert P, Strolin Benedetti M (1986) Nouveaux inhibiteurs de la monoamine oxidase. Actal Chim Thér 13: 269–287.

    CAS  Google Scholar 

  • Dostert P, Strolin Benedetti M, Tipton KF (1989) Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 9: 45–89.

    Article  PubMed  CAS  Google Scholar 

  • Dostert P, Strolin Benedetti M (1991) Structure-modulated recognition of substrates and inhibitors by monoamine oxidases A and B. Biochem Soc Trans 19: 207–211.

    PubMed  CAS  Google Scholar 

  • Dostert P, Strolin Benedetti M, Tipton KF (1991) New anticonvulsants with selective MAO-B inhibitory activity. Eur Neuropsychopharmacol 1: 317–319.

    Article  Google Scholar 

  • Dostert P, O’Brien EM, Tipton KF, Meroni M, Melloni P, Strolin Benedetti M (1992) Inhibition of monoamine oxidase by the R and S enantiomers of N[3-(2,4-dichloro-phenoxy)propyl]-N-methyl-3-butyn-2-amine. Eur J Med Chem 27: 45–52.

    Article  CAS  Google Scholar 

  • Egawa M, Inokuchi T, Ida S, Tobe A (1983) Effects of 4-(o-benzylphenoxy)-N-methyl-butylamine hydrochloride (MCI-2016) on monoamine metabolism in the brain. Nippon Yakurigaku Zasshi 82: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Callingham BA, Mantle TJ, Tipton KF (1980) The effect of lipophilic compounds upon the activity of rat liver mitochondrial monoamine oxidase-A and — B. Biochem Pharmacol 29: 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxidase A and B: biochemical, pharmacological, and clinical properties. Med Res Rev 4: 323–358.

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW (1968) Influence of substrate in the inhibition of rat liver and brain monoamine oxidase. Arch Int Pharmacodyn Ther 174: 32–36.

    PubMed  CAS  Google Scholar 

  • Goldstein DS, Nadi NS, Stull R, Wyler AR, Porter RJ (1988) Levels of catechols in epileptogenic and nonepileptogenic regions of the human brain. J Neurochem 50: 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Ho BT (1972) Monoamine oxidase inhibitors. J Pharm Sci 61: 821–837.

    Article  PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissues. Biochem Pharmacol 17: 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408.

    PubMed  CAS  Google Scholar 

  • Kumagae Y, Matsui Y, Iwata N (1990) Participation of type A monoamine oxidase in the activated deamination of brain monoamines shortly after reperfusion in rats. Jpn J Pharmacol 54: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Kumlien E, Hilton-Brown P, Spännare B, Gillberg P-G (1992) In vitro quantitative autoradiography of [3H]-1-deprenyl and [3H]-PK 11195 binding sites in human epileptic hippocampus. Epilepsia 33: 610–617.

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA, The Parkinson Study Group (1991) Deprenyl’s effect at slowing progression of parkinsonian disability: the DATATOP study. Acta Neurol Scand 84[Suppl 136]: 79–86.

    Article  Google Scholar 

  • Lorez HP, Harvey J, Wright L, Kollar S, Blaszat G, Thomas B, Martin JR, Kettler R, Da Prada M (1990) Moclobemide exhibits neuroprotective effects in hypoxic rat brain. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 477–484.

    Google Scholar 

  • Maker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Kumagae Y (1991) Monoamine oxidase inhibitors prevent striatal neuronal necrosis induced by transient forebrain ischemia. Neurosci Lett 126: 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Mazouz F, Lebreton L, Milcent R, Burstein C (1990) 5-Aryl-l,3,4-oxadiazol-2 (3H)-one derivatives and sulfur analogues as new selective and competitive monoamine oxidase type B inhibitors. Eur J Med Chem 25: 659–671.

    Article  CAS  Google Scholar 

  • Medvedev AE, Gorkin VZ (1992) Biogenic amines and monoamine oxidases in the regulation of activities of membrane-bound mitochondrial enzymes. Bio Amines 8: 323–337.

    CAS  Google Scholar 

  • O’Brien EM, Tipton KF, Strolin Benedetti M, Bonsignori A, Marrari P, Dostert P (1991) Is the oxidation of milacemide by monoamine oxidase a major factor in its anticonvulsant actions?. Biochem Pharmacol 41: 1731–1737.

    Article  PubMed  Google Scholar 

  • O’Carroll A-M, Tipton KF, Sullivan JP, Fowler CJ, Ross SB (1987) Intra-and extras-ynaptosomal deamination of dopamine and noradrenaline by the two forms of human brain monoamine oxidase. Implications for the neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in man. Bio Amines 4: 165–178.

    Google Scholar 

  • Palfreyman MG, Mcdonald IA, Bey P, Danzin C, Zreika M, Lyles GA, Fozard JR (1986) The rational design of suicide substrates of amine oxidases. Biochem Soc Trans 14: 410–413.

    PubMed  CAS  Google Scholar 

  • Pintor M, Mefford IN, Hutter I, Pocotte SL, Wyler AR, Nadi NS (1990) Levels of biogenic amines, their metabolites, and tyrosine hydroxylase activity in the human epileptic temporal cortex. Synapse 5: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Raigorodskaia DI, Medvedev AE, Gorkin VZ, Fedotova IB, Semiokhina AF (1991) Change in the catalytic properties of mitochondrial monoamine oxidase in experimental audiogenic epilepsy. Vopr Med Khim 37: 46–48.

    PubMed  CAS  Google Scholar 

  • Seregi A, Serfözö P, Mergl Z, Schaefer A (1982) On the mechanism of the involvement of monoamine oxidase in catecholamin-estimulated prostaglandin biosynthesis in particulate fraction of rat brain homogenates: role of hydrogen peroxide. J Neurochem 38: 20–27.

    Article  PubMed  CAS  Google Scholar 

  • Sinet PM, Heikkila RE, Cohen G (1980) Hydrogen peroxide production by rat brain in vivo. J Neurochem 34: 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  • Silverman RB (1984) Effect of β-methylation on inactivation of monoamine oxidase by N-cyclopropylbenzylamine. Biochemistry 23: 5206–5213.

    Article  PubMed  CAS  Google Scholar 

  • Silverman RB (1991) The use of mechanism-based inactivators to probe the mechanism of monoamine oxidase. Biochem Soc Trans 19: 201–206.

    PubMed  CAS  Google Scholar 

  • Silverman RB, Hoffman SF, Catus III WB (1980) A mechanism for mitochondrial monoamine oxidase catalyzed amine oxidation. J Am Chem Soc 102: 7126–7128.

    Article  CAS  Google Scholar 

  • Sobaniec W, Rudzinski P, Jankowicz E, Sobaniec-Lotowska M, Kulak W (1989) Cardiazol-induced seizures and the concentration of lipid peroxides in the brain of rats under the influence of valproic acid and vitamin E. Neuropatol Pol 27: 129–136.

    Google Scholar 

  • Strolin Benedetti M, Dostert P (1985) Stereochemical aspects of MAO interactions: reversible and selective inhibitors of monoamine oxidase. Trends Pharmacol Sci 6: 246–251.

    Article  Google Scholar 

  • Strolin Benedetti M, Dostert P (1989) Effect of selective monoamine oxidase substrates and inhibitors on lipid peroxidation and their possible involvement in affective disorders. In: Lerer B, Gershon S (eds) New directions in affective disorders. Springer, Berlin Heidelberg New York Tokyo, pp 156–160.

    Chapter  Google Scholar 

  • Strolin Benedetti M, Dostert P (1992) Monoamine oxidase: from physiology and pathophysiology to the design and clinical application of reversible inhibitors. Adv Drug Res 23: 65–125.

    Google Scholar 

  • Tipton KF, O’Carroll A-M, Mantle TJ, Fowler CJ (1983) Factors involved in the selective inhibition of monoamine oxidase. Mod Probl Pharmacopsychiatry 19: 15–30.

    PubMed  CAS  Google Scholar 

  • Tipton KF, Dostert P, Strolin Benedetti M (1984) Monoamine oxidase and disease. Prospects for therapy with reversible inhibitors. Academic Press, London.

    Google Scholar 

  • Weyler W, Hsu Y-P P, Breakefield XO (1990) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 47: 391–417.

    Article  PubMed  CAS  Google Scholar 

  • White HL, Scates PW (1992) Mechanism of monoamine oxidase-A inhibition by BW 1370U87. Drug Dev Res 25: 191–199.

    Article  CAS  Google Scholar 

  • Willmore LJ, Triggs WJ (1984) Effect of phenytoin and corticosteroids on seizures and lipid peroxidation in experimental posttraumatic epilepsy. J Neurosurg 60: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Da Prada M, Amrein R (1988) The cheese effect and new reversible MAO-A inhibitors. J Neural Transm [Suppl] 26.

    Google Scholar 

  • Yu PH, Bailey BA, Durden DA, Boulton AA (1986) Stereospecific deuterium substitution at the a-carbon position of dopamine and its effect on oxidative deamination catalyzed by MAO-A and MAO-B from different tissues. Biochem Pharmacol 35: 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  • Yu PH, Davis BA (1988) Stereospecific deamination of benzylamine catalyzed by different amine oxidases. Int J Biochem 20: 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  • Zeller EA (1971) Amine oxidases. In: Brodie BB, Gillette JR, Ackerman HS (eds) Handbook of experimental pharmacology, vol 28. Springer, Berlin Heidelberg New York, pp 518–535.

    Google Scholar 

  • Zhang J, Piantadosi CA (1991) Prevention of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity. J Appl Physiol 71: 1057–1061.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Dostert, P. (1994). Can our knowledge of monoamine oxidase (MAO) help in the design of better MAO inhibitors?. In: Tipton, K.F., Youdim, M.B.H., Barwell, C.J., Callingham, B.A., Lyles, G.A. (eds) Amine Oxidases: Function and Dysfunction. Journal of Neural Transmission, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9324-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9324-2_35

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82521-1

  • Online ISBN: 978-3-7091-9324-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics