Skip to main content

Internal flows with multiple sonic points

  • Chapter
Fluid- and Gasdynamics

Part of the book series: Acta Mechanica ((ACTA MECH.SUPP.,volume 4))

  • 296 Accesses

Summary

In real gas flow several effects are inverted if the fundamental gasdynamic derivative Γ becomes negative. Here we investigate stationary flows with multiple sonic points. In a nozzle with two throats three sonic points occur where the first or the last is related with the absolute maximum of the mass flux density; the location of this absolute maximum depends on the reservoir state. Then we calculate 2-D flows in a circular arc nozzle by solving the Euler equation with a time dependent finite volume method (FVM) of Jameson. For a high exit pressure (p e /p 01 = 0.94) two sonic shocks occur whereas the flow remains entirely subsonic in between. In order to demonstrate nonclassical effects in strongly bended channels we present results of potential vortex flow of dense gases. Here we observe the formation of separated circular ring shaped supersonic and subsonic regions in the interior of the vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duhem, P.: Sur la propagation des ondes de choc au sein des fluides. Z. Phys. Chem. 69, 169–186 (1909).

    Google Scholar 

  2. Thompson, P. A.: A fundamental derivative in gasdynamics. Phys. Fluids 14, 1843–1849 (1971).

    Article  MATH  ADS  Google Scholar 

  3. Cramer, M. S., Kluwick, A.: On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 9–37 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Cramer, M. S.: Nonclassical dynamics of classical gases. In: Nonlinear waves in real fluids (Kluwick, A., ed.), pp. 91–145. Wien New York: Springer 1991.

    Google Scholar 

  5. Bethe, H.: The theory of shock waves for an arbitrary equation of state. Off. Sci. Res. Dey. Rep. 545 (1942).

    Google Scholar 

  6. Zel’dovich, Y.: On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363–364 (1946).

    Google Scholar 

  7. Thompson, P., Lambrakis, K.: Negative shock waves. J. Fluid Mech. 60, 187–208 (1973).

    Article  MATH  ADS  Google Scholar 

  8. Cramer, M. S., Best, L.: Steady, isentropic flows of dense gases. Phys. Fluids A3, 219–226 (1991).

    Article  MATH  ADS  Google Scholar 

  9. Kluwick, A.: Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661–688 (1993).

    Article  MATH  ADS  Google Scholar 

  10. Cramer, M. S., Fry, R.: Nozzle flows of dense gases. Phys. Fluids A5, 1246–1259 (1993).

    Article  ADS  Google Scholar 

  11. Schnerr, G. H., Leidner, P.: Two-dimensional nozzle flow of dense gases. ASME Paper 93-FE-8, ASME Fluids Engineering Conference, Washington, DC, June 20–24, 1993.

    Google Scholar 

  12. Cramer, M. S., Crickenberger, A. B.: Prandtl-Meyer function for dense gases. AIAA J. 30, 561–564 (1992).

    Article  MATH  ADS  Google Scholar 

  13. Reid, R., Prausnitz, J., Poling, B.: The properties of gases and liquids, 4th edn. New York: Mc Graw-Hill 1987.

    Google Scholar 

  14. Jameson, A., Schmidt, W, Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 81–1259 (1981).

    Google Scholar 

  15. Schnerr, G. H., Leidner, P.: Realgaseinflüsse auf einen senkrechten Stoß an einer gekrümmten Wand. Z. Angew. Math. Mech. 73, T548 - T551 (1993).

    Google Scholar 

  16. Schnerr, G. H., Leidner, P.: Real gas effects on the normal shock behavior near curved walls. Phys. Fluids A5, 2996–3003 (1993).

    ADS  Google Scholar 

  17. Zierep, J.: Der senkrechte Verdichtungsstoß am gekrümmten Profil. Z. Angew. Math. Phys. XIb, 764–776 (1958) (Festschrift Jakob Ackeret).

    Article  Google Scholar 

  18. Oswatitsch, K.: Grundlagen der Gasdynamik. Wien New York: Springer 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Schnerr, G.H., Leidner, P. (1994). Internal flows with multiple sonic points. In: Schnerr, G.H., Bohning, R., Frank, W., Bühler, K. (eds) Fluid- and Gasdynamics. Acta Mechanica, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9310-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9310-5_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82495-5

  • Online ISBN: 978-3-7091-9310-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics