Advertisement

NMR Spectroscopy: Current Status and Future Possibilities

  • David G. Gadian
  • S. R. Williams
  • T. E. Bates
  • R. A. Kauppinen
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 57)

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is now established as a non-invasive method of studying metabolism in living systems, ranging from cellular suspensions to man. With respect to clinical applications, recent developments include the successful implementation of new techniques for spatial localisation, and in particular the acquisition of excellent 1H spectra from selected regions of the human brain. Localised 1H spectroscopy opens the way to monitoring a wide range of compounds that are inaccessible to 31P NMR, and should add considerably to the information that is available from 31P studies. NMR spectroscopy does, however, have its limitations, which arise primarily from the fact that it is an insensitive technique. This lack of sensitivity limits the spatial resolution for metabolic studies, and means that metabolites must be present at fairly high concentrations in order to produce detectable signals. In this article, we illustrate the scope and limitations of NMR spectroscopy by describing a few examples of studies undertaken on animals and humans.

Keywords

1H-spectroscopy spectral editing in vivo metabolism ischaemia 

Abbreviations

NMR

nuclear magnetic resonance

PCr

phosphocreatine

PME

phosphomonoester

PDE

phosphodiester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P NMR using surfacecoils. Nature 283: 167–170PubMedCrossRefGoogle Scholar
  2. 2.
    Alger JR, Shulman RG (1984) Metabolic applications of 13Cnuclear magnetic resonance spectroscopy. Br Med Bull 40: 160–164PubMedGoogle Scholar
  3. 3.
    Allen K, Busza AL, Crockard HA, Frackowiak RSJ, Gadian DG, Proctor E,Ross Russell RW, Williams SR (1988) Acute cerebralischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH and lactate measured with hydrogen clearance and 31Pand 1H nuclear magnetic resonance spectroscopy: III Changesfollowing ischaemia. J Cereb Blood Flow Metabol 8: 816–821CrossRefGoogle Scholar
  4. 4.
    Bachelard HS, Badar-Goffer RS,Brooks KJ, Dolin SJ, Morris PG (1988) Measurement of freeintracellular calcium in the brain by 19F-nuclearmagnetic resonance spectroscopy. J Neurochem5l: 1311–1313CrossRefGoogle Scholar
  5. 5.
    Bates TE, Williams SR, Busza AL, Gadian DG, Proctor E (1988) A 31P nuclear magnetic resonance study in vivo ofmetabolic abnormalities in rats with acute liver failure.NMR Biomed1:67–73PubMedCrossRefGoogle Scholar
  6. 6.
    Bates TE, Williams SR, Kauppinen RA, Gadian DG (1989) Observation of cerebral metabolites in an animal model of acute liver failure in vivo. A 1H and31P nuclearmagnetic resonancestudy. J Neurochem 53: 102–110PubMedCrossRefGoogle Scholar
  7. 7.
    Bates TE, Williams SR, Gadian DG (1989) Phosphodiestersin the liver: the effect of field strength on the 31Psignal. Magn ResonMed 12: 145–150CrossRefGoogle Scholar
  8. 8.
    Behar KL, den Hollander JA, Stromski ME, Ogino T, Shulman RG, Petroff OAC,Prichard JW (1983) High resolution 1H NMR study ofcerebral hypoxia in vivo. Proc Natl Acad Sci USA80: 4945–4948PubMedCrossRefGoogle Scholar
  9. 9.
    Berkowitz BA, Song S-K, Deuel RK, Ackerman JJH (1987) 2 Fluoro-2-deoxy-D-glucose cerebral metabolism at low NMR dose (20 mg/kg) in the conscious rat in situ: 19F-(1H) NMR investigation. Proc Soc Magn Reson Med 6th annual meeting New York, p 109Google Scholar
  10. 10.
    Bomsdorf H, Hetzel T, Kunz D, Roeschmann P, Tschendel O,Wieland J (1988) Spectroscopy andimaging on a 4T whole body magnetic resonance system. NMR Biomed 1: 151–158PubMedCrossRefGoogle Scholar
  11. 11.
    Bottomley PA (1989) Human in vivo NMRspectroscopy in diagnostic medicine: clinical tool or research probe?Radiology 170:1–15PubMedGoogle Scholar
  12. 12.
    Bottomley PA, Foster TB, Darrow RD (1984) Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P,and 13C NMR.J Magn Reson 59: 338–342Google Scholar
  13. 13.
    Bottomley PA, Drayer BP, Smith LS (1986) Chronic adult cerebral infarction studied by phosphorus NMR spectroscopy. Radiology 160:763–766PubMedGoogle Scholar
  14. 14.
    Bottomley PA, Charles HC, Roemer PB, Flamig D, Engeseth H, Edelstein WA, Mueller OM (1988)Human in vivo phosphate metabolite imaging. Magn Reson Med 7: 319–336PubMedCrossRefGoogle Scholar
  15. 15.
    Brenton DP, Garrod PJ, Krywawych S, Reynolds EOR, Bachelard HS, Cox DW, Morris PG (1985) Phosphoethanolamine is major constituent of phosphomonoester peak detected by 31P NMR in newbornbrain. Lancet i: 115Google Scholar
  16. 16.
    Brooks KJ, Kauppinen RA, Williams SR, Bachelard HS, Bates TE, Gadian DG(1989) Ammonia causes a drop in intracellular pH in metabolising cortical brain slices. A 31Pand 1H nuclear magnetic resonancestudy. Neuroscience 33: 185–192Google Scholar
  17. 17.
    Brunn H, Frahm J, Gyngell ML,Merboldt KD, Hanicke W, Sauter R (1988) Localized proton spectroscopy of tumoursin vivo: patients with primary andsecondary tumours. Proc Soc Magn Reson Med, 7th annual meeting San Francisco, p253Google Scholar
  18. 18.
    Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med 9:126–131PubMedCrossRefGoogle Scholar
  19. 19.
    Cady EB, Costello AMdeL, Dawson MJ, Delpy DT, Hope PL, Reynolds EOR, Tofts PS, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorusnuclear magnetic resonance spectroscopy. Lancet i: 1059–1062Google Scholar
  20. 20.
    Cerdan S, Harihara Subramanian V, Hilberman M, Cone J, Egan J, Chance B, Williamson JR (1986) 31P NMR detection of mobile dog brain phospholipids. Magn Reson Med 3: 432–439PubMedCrossRefGoogle Scholar
  21. 21.
    Clark LC,Ackerman JL, Thomas SR, Millard RW (1984) Highcontrast tissue and bloodoxygen imaging based on fluorocarbon 19F NMR relaxation times. MagnReson Med 1: 135–136Google Scholar
  22. 22.
    Coutts GA, CoxIJ, Gadian DG, Sargentoni J, Bryant DJ, Collins AG (1989) Phosphorus-31 magneticresonance spectroscopy of the normal human brain: approaches using fourdimensional chemical shift imaging and phase mapping techniques. NMR Biomed 1:190–197PubMedCrossRefGoogle Scholar
  23. 23.
    Crockard HA,Gadian DG, Frackowiak RSJ, Proctor E, Allen K, Williams SR, Ross Russell RW(1987) Acute cerebral ischaemia: concurrent changes in cerebral blood flow,energy metabolites, pH and lactate measured with hydrogen clearance and 31Pand 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia. JCereb Blood Flow Metabol 7: 394–402CrossRefGoogle Scholar
  24. 24.
    Deuel RK, Yue GM,Sherman WR, Schnicker DJ, Ackerman JJH (1985) Monitoring the time course ofcerebral deoxyglucose metabolism by 31P nuclear magnetic resonancespectroscopy. Science 228: 1329–1331PubMedCrossRefGoogle Scholar
  25. 25.
    Deutsch C, Taylor JS,Wilson DF (1982) Regulation of intracellular pH by humanperipheral blood lymphocytes as measured by 19F NMR. Proc Natl Acad Sci USA 79: 7944–7948PubMedCrossRefGoogle Scholar
  26. 26.
    Deutz NEP,Chamuleau RAFM, deGraafAA, Bovee WMMJ, deBeerR (1988a) In vivo 31P NMR spectroscopy of the rat cerebralcortex during acute hepatic encephalopathy. NMR Biomed 1: 101–106PubMedCrossRefGoogle Scholar
  27. 27.
    Deutz NEP, de Graaf AA, de Haan JG, BoveeWMMJ, deBeerR (1988b) In vivo brain 1H NMR spectroscopy during acute hepaticencephalopathy. In: Soeters PB (ed) Advances in ammonia metabolism and acutehepatic encephalopathy. Elsevier, Amsterdam, pp 439–446Google Scholar
  28. 28.
    Eidelberg D,Johnson G, Barnes D, Tofts PS, Delpy D, Plummer D, McDonald WI(1988) 19F NMR imaging of blood oxygenation in the brain. Magn ResonMed 6: 344–352CrossRefGoogle Scholar
  29. 29.
    Eleff SM, SchnallMD, LigettiL, Osbakken M, Subramanian VH, Chance B, Leigh JS (1988) Concurrentmeasurements of cerebral blood flow, sodium, lactate and high-energy phosphatemetabolism using 19F, 23Na, 1H and 31P NMRspectroscopy. Magn Reson Med 7: 412–424PubMedCrossRefGoogle Scholar
  30. 30.
    Ewing JR, BranchCA, Helpern JA,SmithMB, Butt SM, Welch KM A (1989) Cerebral blood flow measured by NMR indicatordilution technique in cats. Stroke 20: 259–267PubMedCrossRefGoogle Scholar
  31. 31.
    Foster MA,Hutchison JMS(eds)(1987) Practical NMR Imaging. IRL Press, Oxford WashingtonGoogle Scholar
  32. 32.
    Gadian DG (1982)Nuclear magnetic resonance and its applications to living systems. OxfordUniversity Press, OxfordGoogle Scholar
  33. 33.
    Gadian DG,Frackowiak RSJ, Crockard HA, Proctor E, Allen K, Williams SR, Ross Russell RW(1987) Acute cerebral ischaemia: concurrent changes in cerebral blood flow,energy metabolites, pH and lactate measured with hydrogen clearance and 31Pand 1H nuclear magnetic resonance spectroscopy. I. Methodology. J Cereb BloodFlow Metabol 7: 199–206CrossRefGoogle Scholar
  34. 34.
    Garlick PB, BrownTR, Sullivan RH, Ugurbil K (1983) Observation of a second phosphate pool in theperfused heart by 31P NMR; is this the mitochondrial phosphate? J Mol Cell Cardiol 15:855–858PubMedCrossRefGoogle Scholar
  35. 35.
    Gill SS, SmallRK, Thomas DGT, Patel P, Porteous R, Van Bruggen N, Gadian DG, Kauppinen RA,Williams SR (1989) Brain metabolites as 1H NMR markers of neuronal and glialdisorders. NMR Biomech 2: 196–200CrossRefGoogle Scholar
  36. 36.
    Gyulai L,Bolinger L, Leigh JS, Barlow C, Chance B (1984) Phosphorylethanolamine: themajor constituent of the phosphomonoester peak observed by 31P NMRon developing dog brain. FEBS Lett 178: 137–142PubMedCrossRefGoogle Scholar
  37. 37.
    Hanstock CC,Rothman DL, Prichard JW, Jue T, Shulman RG (1988) Spatially localized 1H NMRspectra of metabolites in the human brain. Proc Natl Acad Sei USA 85: 1821–1825CrossRefGoogle Scholar
  38. 38.
    Hope PL, CostelloAMdeL, Cady EB, Delpy DT, Tofts PS, Chu A, Hamilton PA, Reynolds EOR, Wilkie DR(1984) Cerebral energy metabolism studied with phosphorus NMR spectroscopy innormal and birth-asphyxiated infants. Lancet ii: 366–370CrossRefGoogle Scholar
  39. 39.
    Hope PL, ReynoldsEOR (1985) Investigation of cerebral energy metabolism in newborn infants by 31PNMR spectroscopy. Clin Perinatology 12: 261–275Google Scholar
  40. 40.
    Hoult DI, BusbySJW, Gadian DG,RaddaGK, Richards RE, Seeley PJ (1974) Observations of tissue metabolites using 31Pnuclear magnetic resonance. Nature 252: 285–287PubMedCrossRefGoogle Scholar
  41. 41.
    Koller KJ, Zaczek R,Coyle JT (1984) N-Acetyl-aspartyl-glutamate: regional levels in rat brain andthe effects of brain lesions as determined by a new HPLC method. J Neurochem43: 1136– 1142PubMedCrossRefGoogle Scholar
  42. 42.
    Luyten PR, denHollander JA,Segebarth C,Baleriaux D (1988a) Localized 1H NMR spectroscopy and spectroscopic imaging ofhuman brain tumours in situ. Proc Soc Magn Reson Med, 7th annual meetingSan Francsisco, p 252Google Scholar
  43. 43.
    Luyten PR, vanRijen PC, Berkelbach vd Sprenkel JW, Tulleken CAF, den Hollander JA (1988b) 1H NMRspectroscopic detection of cerebral metabolic alterations in patients withhemodynamically significant cerebrovascular disease. Proc Soc Magn Reson Med,7th annual meeting, San Francisco, p 619Google Scholar
  44. 44.
    Morris PG (1986)Nuclear magnetic resonance imaging in medicine and biology. Clarendon Press,OxfordGoogle Scholar
  45. 45.
    Nadler JV, CooperJR (1972) N-acetyl-L-aspartic acid content of human neural tumours and bovineperipheral tissues. J Neurochem 19: 313–319PubMedCrossRefGoogle Scholar
  46. 46.
    Nakada T, KweeIL, Conboy CB (1986) Noninvasive in vivo demonstration of2-fluoro-2-deoxy-D-glucose metabolism beyond the hexokinase reaction in ratbrain by 19F nuclear magnetic resonance spectroscopy. J Neurochem46: 198–201PubMedCrossRefGoogle Scholar
  47. 47.
    Naritomi H,Sasaki M, Kanashiro M, Kitani M, Sawada T (1988) Flow thresholds for cerebralenergy disturbance and Na+ pump failure as studied by 31Pand 23Na NMR spectroscopy. J Cereb Blood Flow Metabol 8: 16–23CrossRefGoogle Scholar
  48. 48.
    Naruse S,Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Watari H (1984) In vivo measurementof energy metabolism and the concomitant monitoring of electroencephalogram inexperimental cerebral ischemia. Brain Res 296: 370–372PubMedCrossRefGoogle Scholar
  49. 49.
    Oberhaensli RD,Bore PJ, Rampling RP, Hilton-Jones D, Hands J, Radda GK (1986) Biochemicalinvestigation of human tumours in vivo with phosphorus-31 magneticresonance spectroscopy. Lancet ii: 8–11CrossRefGoogle Scholar
  50. 50.
    Pettegrew JW, Kopp SJ, Dadok J,Minshew NJ, Feliksik JM, Glonek T, Cohen MM (1986) Chemical characterization ofa prominent phosphomonoester resonance from mammalian brain. 31P and1H NMR analysis at 4.7 and 14.1 T. J Magn Reson 67: 443–450Google Scholar
  51. 51.
    Ross BD, RaddaGK, Gadian DG, Rocker G, Esiri M, Falconer Smith J(1981) Examination of a caseof suspected McArdle’s syndrome by 31P nuclear magnetic resonance. NEngl J Med 304: 1338–1342CrossRefGoogle Scholar
  52. 52.
    SegebarthCM,Baleriaux DF, Arnold DL, Luyten PR, den Hollander JA (1987)Image-guided localised 31P MRS spectroscopy of human brain tumours insitu: effect of treatment. Radiology 165: 215–219PubMedGoogle Scholar
  53. 53.
    Siesjö BK (1985)Acid-base homeostasis in the brain: physiology, chemistry, and neurochemicalpathology. Prog Brain Res 63: 121–154PubMedCrossRefGoogle Scholar
  54. 54.
    Smith GA, HeskethRT, Metcalfe JC, Feeney J, Morris PG (1983) Intracellular calcium measurementsby 19F NMR of fluorine-labelled chelators. Proc Natl Acad Sci USA 80: 7178–7182PubMedCrossRefGoogle Scholar
  55. 55.
    Stark DD, BradleyWG (eds) (1988) Magnetic resonance imaging. CV Mosby, St LouisGoogle Scholar
  56. 56.
    Thulborn KR, du Boulay GH, Duchen LW, Radda GK (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in thegerbil. J Cereb Blood Flow Metabol 2: 299–306CrossRefGoogle Scholar
  57. 57.
    Tofts P, Wray S (1985) Changes in brain phosphorus metabolites during the post-natal development of the rat. J Physiol 359: 417–429PubMedGoogle Scholar
  58. 58.
    Welch KMA, Gross B, Licht J, Levine SR, Glasberg M, Smith MB, Helpern JA, Bueri J, Gorell JM (1988) Magnetic resonancespectroscopy of neurologic diseases. In: SH Appel (ed) Currentneurology, Vol 8, pp 295–331Google Scholar
  59. 59.
    Younkin DP, Delivora-Papadopoulos M, Leonard JC,Subramanian VH, Eleff S, Leigh JS, Chance B (1984) Uniqueaspects of human newborn cerebral metabolism evaluated withphosphorus nuclear magnetic resonance spectroscopy. Ann Neurol 6:581–586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • David G. Gadian
    • 1
  • S. R. Williams
    • 1
  • T. E. Bates
    • 1
  • R. A. Kauppinen
    • 1
  1. 1.Hunterian InstituteRoyal College of Surgeons of EnglandLondonUK

Personalised recommendations