Skip to main content

The neostriatal mosaic: multiple levels of compartmental organization

  • Conference paper
Advances in Neuroscience and Schizophrenia

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 36))

Summary

Although schizophrenia may result from dysfunction of the cerebral cortex the possible indirect involvement of the basal ganglia may be important as this neural system provides a major neural system through which the cortex affects behavior. Processing of cortical input occurs within the striatum, which is the main component of the basal ganglia, where excitatory cortical imput is transformed to oppositely modulate the output nuclei of the basal ganglia. The details of this transformation, as well as the role of dopamine in this process, are beginning to unfold. Striatal projections to the globus pallidus, through connections with the subthalamic nucleus, modulate excitatory input to the output neurons of the basal ganglia, GABAergic neurons in the internal segment of the globus pallidus and in the substantia nigra, whereas striatal projections directly to these neurons, provide inhibitory inputs. Thus, cortically driven activity in these two striatal output pathways oppositely modulate the output neurons of the basal ganglia. Dopamine appears to play a crucial role in this transformation. D1 and D2 dopamine receptors are specifically expressed by striatonigral and striatopallidal neurons, respectively. The direct action of dopamine through these receptors appears to oppositely modulate the responsiveness of striatal output pathways to cortical input. Insights into the role of dopaminergic function within the basal ganglia may have direct relevance to the development of treatments for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of the substantia innominata. Neuroscience 27: 1–39

    Article  PubMed  CAS  Google Scholar 

  • Arenas E, Alberch J, Perez-Navarro E, Solsona C, Marsal J (1991) Neurokinin receptors differentially mediate endogenous acetycholine release evoked by tachykinins in the neostriatum. J Neurosci 11: 2332–2338

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Lee J-M, Girand P, Young A, Affolter J-U, Bonner TI (1986) Dopamine antagonist haloperidol decreases substance P, substance K and preprotachykinin mRNAs in rat striatonigral neurons. J Biol Chem 261: 6640–6642

    PubMed  CAS  Google Scholar 

  • Berendse HW, Voorn P, Kortschot AT, Groenewegen HJ (1988) Nuclear origin of thalamic afferents of the ventral striatum determines their relation to patch/matrix configurations in enkephalin immunoreactivity in the rat. J Chem Neuroanat 1: 3–10

    PubMed  CAS  Google Scholar 

  • Bergman H, Whitman T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP, Izzo IN, Graybiel AM (1988) Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in cat and ferret. Neuroscience 24: 853–875

    Article  PubMed  CAS  Google Scholar 

  • Carlson JH, Bergrstrom DA, Walters JR (1985) Stimulation of both D1 and D2 dopamine receptors appears as necessary for full expression of postynapitc effects of dopamine agonists: a neurophysiological study. Brain Res 400: 205–218

    Article  Google Scholar 

  • Carlson JH, Bergstrom DA, Demo SD, Walters JR (1990) Nigrostriatal lesion alters neurophysiological responses to selective and nonselective D-1 and D-2 dopamine agonists in rat globus pallidus. Synapse 5: 83–93

    Article  PubMed  CAS  Google Scholar 

  • Chesselet M-F, Graybiel AM (1985) Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic interneuronal system in the cat. Neuroscience 17: 547–571

    Article  Google Scholar 

  • Chevalier G, Vacher S, Deniau JM, Desban M (1985) Disinhibition as a basic process in the expression of striatal function. I. The striato-nigral influence on tecto-spinal/ tecto-diencephalic neurons. Brain Res 334: 215–226

    Google Scholar 

  • Clark D, White FJ (1987) Review: D1 dopamine receptor-the search for a function: a critical review of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1: 347–388

    Article  PubMed  CAS  Google Scholar 

  • Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334: 227–233

    Google Scholar 

  • Donoghue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 365: 397–403

    Article  PubMed  CAS  Google Scholar 

  • Ferino F, Thierry AM, Saffroy M, Glowinski J (1987) Interhemispheric and subcortical collaterals of medial prefrontal cortical neurons in the rat. Brain Res 417: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1984) The eorstriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236: 454–476

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1991) Substance P (Neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res 556: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Young WS (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Staines WA, Arbuthnott GW, Fibiger HC (1982) Crossed connections of the substantia nigra in the rat. J Comp Neurol 207: 283–303

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82: 8780–8784

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Thibault J (1987) The neostriatal mosaic. III. Biochemical and developmental dissociation of dual nigrostriatal dopaminergic systems. J Neurosci 7: 3935–3944

    Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic. II. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7: 3915–3934

    Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, FJ Monsma J, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, McGinty JF, Young WS (1991) Dopamine differentially regulates dynorphin, substance P and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11: 1016–1031

    PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJH (1977) An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 171: 369–385

    Article  Google Scholar 

  • Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primates neostriatum: subdivision into island and matrix cellular compartments. J Comp Neurol 205: 398–413

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci USA 75: 5723–5726

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CWJ, Yoneika ES, Elde RP (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible with acetylcholinesterase staining. Neuroscience 6: 377–397

    Article  PubMed  CAS  Google Scholar 

  • Grove EA, Domesick VB, Nauta WJH (1986) Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracer Phaseolus vulgaris leucagglutinin ( PHA-L ). Brain Res 367: 379–384

    Google Scholar 

  • Herkenham M (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In: Jones EG, Peters A (eds) Cerebral cortex. Plenum, New York, pp 403–445

    Google Scholar 

  • Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature (London) 291: 415–418

    Article  CAS  Google Scholar 

  • Herkenham M, Edley SM, Stuart J (1984) Cell clusters in the nucleus accumbens of the rat, and the mosaic relationship of opiate receptors, acetylcholinesterase and sub-cortical afferent terminations. Neuroscience 11: 561–593

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Wurtz RH (1983a) Visual and oculmotor functions of monkey substantia nigra pars reticulata. I. Relation to visual and auditory responses to saccades. J Neurophysiol 49: 1230–1253

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983c) Visual and oculmotor functions of monkey substantia nigra pars reticulata. III. Memory contingent visual and saccade responses. J Neurophysiol 49: 1268–1284

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983d) Visual and oculmotor functions of monkey substantia nigra pars reticulata. IV. Relation of subsantia nigra to superior colliculus. J Neurophysiol 49: 1285–1301

    Google Scholar 

  • Hong JS, Yang H-YT, Costa E (1978) Substance P content of substantia nigra after chronic treatment with antischizophrenic drugs. Neuropharmacology 17: 83–85

    Article  PubMed  CAS  Google Scholar 

  • Hong JS, Yoshikawa K, Kanamatsu T, Sabol SL (1985) Modulation of striatal enkephalinergic neurons by antipsychotic drugs. Fed Proc 44: 2535–2539

    PubMed  CAS  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1987) Subdivisions of the dopamine-containing A8–A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience 23: 223–242

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1989) Compartmental origins of striatal efferent projections in the cat. Neuroscience 32: 297–321

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1984) Laminar distribution of cortical efferent cells. In: Jones EG, Peters A (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum, New York, pp 521–553

    Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson P (1989) Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 62: 1052–1068

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson P (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10: 3421–3438

    PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260: 435–452

    Article  PubMed  CAS  Google Scholar 

  • Kita H. Kitai ST (1988) Glutamate decarboxylase immunoreactive neurons in ratneostriatum: their morphological and populations. Brain Res 447: 346–352

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Chang HT, Kitai ST (1983) Pallidal inputs to subthalamus: intracellular anal-ysis. Brain Res 264: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 87: 230–234

    Article  PubMed  Google Scholar 

  • Li SJ, Sivam SP, McGinty JF, Huang YS, Hong JS (1987) Dopaminergic regulation of tachykinin metabolism in the striatonigral pathway. J Pharmacol Exp Ther 243: 792–798

    PubMed  CAS  Google Scholar 

  • Li SJ, Sivam SP, McGinty JF, Douglass J, Calavetta L, Hong JS (1988) Regulation of the metabolism of striatal dynorphin by the dopaminergic system. J Pharmacol Exp Ther 246: 403–408

    PubMed  CAS  Google Scholar 

  • Lolait SJ, O’Carroll A-M, Kusano K, Mahan LC (1989) Pharmacological characterization and region-specific expression in brain of the B2- and B3-subunits of the rat GABAA receptor. FEBS Lett 258: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, Remer S, Hollt V, Herz A (1988) Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway. Mol Brain Res 4: 15–22

    Article  CAS  Google Scholar 

  • Nauta WJH, Smith GP, Faull RLM, Domesick VB (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3: 385–401

    Article  PubMed  CAS  Google Scholar 

  • Pan HS, Walters JR (1988) Unilateral lesion of the nigrostriatal pathway decreases firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2: 650–656

    Article  PubMed  CAS  Google Scholar 

  • Park MR, Lighthall JW, Kitai ST (1980) Recurrent inhibition in the rat neostriatum. Brain Res 194: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Penny GR, Afsharpour S, Kitai ST (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience 17: 1011–1045

    Article  PubMed  CAS  Google Scholar 

  • Pert CB, Kuhar MJ, Snyder SH (1976) Opiate receptor: autoradiographic demonstration of localization in rat brain. Proc Natl Acad Sci USA 73: 3729–3733

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CWJ, Graybiel AM (1981) The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistry. Brain Res 208: 259–266

    Article  PubMed  Google Scholar 

  • Ragsdale CWJ, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate mucleus of the cat. J Comp Neurol 269: 506–522

    Article  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296: 47–64

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Bolam JP, Krosigk My (1990) Topographical and synaptic organization of the GABA-containing pallidosubthalamic projection in the rat. Eur J Neurosci 2: 500–511

    Article  PubMed  Google Scholar 

  • Trugman JM, Wooten GF (1987) Selective D1 and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions. J Neurosci 7: 2927–2935

    PubMed  CAS  Google Scholar 

  • Voorn P, Roest G, Groenewegen HJ (1987) Increase of enkephalin and decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat after midbrain 6-hydroxydopamine lesions. Brain Res 412: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Walters JR, Bergstrom DA, Carlson JH, Chase TN, Braun AR (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist affects. Science 236: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Wieck BG, Walters ‘JR (1987) Effects of Dl and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: Dl/D2 coactivation induces potentiated responses. Brain Res 405: 234–246

    Article  Google Scholar 

  • Wilson CJ (1990) The basal ganglia. In: Shepard GM (ed) The synaptic organization of the brain. Oxford Press, New York, pp 279–316

    Google Scholar 

  • Wilson CJ, Croves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J Comp Neurol 194: 599–615

    Article  PubMed  CAS  Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopaminergic neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci USA 83: 9827–9831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Gerfen, C.R. (1992). The neostriatal mosaic: multiple levels of compartmental organization. In: Tuma, A.H., Stricker, E.M., Gershon, S. (eds) Advances in Neuroscience and Schizophrenia. Journal of Neural Transmission, vol 36. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9211-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9211-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82347-7

  • Online ISBN: 978-3-7091-9211-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics