Skip to main content

The pollen surface in wind-pollination with emphasis on the Compositae

  • Conference paper

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 5))

Abstract

Theoretical calculations and experimental observations indicate that the surface sculpture of pollen has a slight influence on pollen flight dynamics in wind-pollinated angiosperms. Sculpture is also important as it influences pollen clumping. Variations in ultrastructure that affect pollen density will change flight parameters. Wodehouse’s hypothesis that the smoothness of the pollen surface in anemophilous plants results from an overall thinning of the exine is not supported by measurements of the exine in the Compositae or for angiosperms as a whole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodmer, H., 1922: Über den Windpollen. — Natur u. Tech. Zürich 3: 66.

    Google Scholar 

  • Brooks, J., Shaw, G., 1968: The post-tetrad ontogeny of the pollen wall and the chemical structure of the sporopollenin of Lilium henryi. Grana Palynol. 8: 227 — 234.

    Google Scholar 

  • Camazine, S., Niklas, K. J., 1984: Aerobiology of Symplocarpus foetidus: interactions between the spathe and spadix. — Amer. J. Bot. 71: 843 — 850.

    Google Scholar 

  • Cocke, E. C., 1937: Calculating pollen concentration of the air. — J. Allergy 8: 601— 606.

    Google Scholar 

  • Crane, P. R., 1986: Form and function in wind dispersed pollen. — In Blackmore, S., Ferguson, I. K., (Eds.): Pollen and spores: form and function. — Linn. Soc. Symp. Ser. 12: 179 — 202.

    Google Scholar 

  • Durham, O. C., 1946: The volumetric incidence of atmospheric allergens. 3. Rate of fall of pollen grains in still air. — J. Allergy 17: 70 — 78.

    Google Scholar 

  • Dyakowska, J., 1937: Researches on the rapidity of the falling down of pollen of some trees. — Bull. Int. Acad. Cracovie (Acad. Po. Sci.), ser. B, Sci. Nat. 1: 155 —168.

    Google Scholar 

  • Faegri, K., Iversen, J., 1975: Textbook of pollen analysis. 3rd edn. — New York: Hafner.

    Google Scholar 

  • Pijl, L., 1979: The principles of pollination ecology. 3rd edn. — Oxford: Pergamon.

    Google Scholar 

  • Ferguson, I. K., 1984: Pollen morphology and biosystematics of the subfamily Papilionoideae (Leguminosae). — In GRANT, W. F., (Ed.): Plant biosystematics, pp. 377 — 394.

    Google Scholar 

  • Skvarla, J. J., 1981: The pollen morphology of the subfamily Papilionoideae (Leguminosae). — In PoLHILL, R. M., RAVEN, P. H., ( Eds. ): Advances in legume systematics, pp. 859

    Google Scholar 

  • Skvarla, J. J. 1982: Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Bot. J. Linn. Soc. 84: 183 —193.

    Google Scholar 

  • Frankel, R., Galun, E., 1977: Pollination mechanisms, reproduction and plant breeding. New York, Berlin, Heidelberg: Springer.

    Google Scholar 

  • Gregory, P. H., 1973: The microbiology of the atmosphere. 2nd edn. — Aylesbury, England: Leonard Hill.

    Google Scholar 

  • Harrington, J. B., Metzger, K., 1963: Ragweed pollen density. — Amer. J. Bot. 50: 532 — 539.

    Google Scholar 

  • Hemsley, A. J., Ferguson, I. K., 1985: Pollen morphology of the genus Erythrina (Leguminosae: Papilionoideae) in relation to floral structure and pollinators. — Ann. Missouri Bot. Gard. 72: 570 — 590.

    Google Scholar 

  • Hesse, M., 1979: Ultrastruktur und Verteilung des Pollenkitts in der insekten-und windblutigen Gattung Acer (Aceraceae). — Pl. Syst. Evol. 131: 277 — 289.

    Google Scholar 

  • Hesse, M., 1979: Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo-und anemophilen Angiospermen: Polygonaceae. — Flora 168: 558 — 577.

    Google Scholar 

  • Hesse, M., 1979: Entstehung und Auswirkungen der unterschiedlichen Pollenklebrigkeit von San-guisorba officinalis und S. minor. — Pollen & Spores 21: 399 — 413.

    Google Scholar 

  • Hesse, M., 1980: Ultrastruktur und Entwicklungsgeschichte des Pollenkitts von Euphorbia cyparissias, E. palustris und Mercuralis perennis (Euphorbiaceae). — Pl. Syst. Evol. 135: 253 — 263.

    Google Scholar 

  • Hesse, M., 1980: Zur Frage der Anheftung des Pollens an blütenbesuchende Insekten mittels Pollenkitt und Viscinfdden. — Pl. Syst. Evol. 133: 135 —148.

    Google Scholar 

  • Hesse, M., 1981: The fine structure of the exine in relation to the stickiness of angiosperm pollen. Rev. Palaeobot. Palynol. 35: 81— 92.

    Google Scholar 

  • Hesse, M., 1981 b: Pollenkitt and viscin threads: their role in cementing pollen grains. Grana 20: 145 —152.

    Google Scholar 

  • Hesse, M., 1984: Form and function of Delonix pollen surface. — Mikroskopie 41: 70 — 72.

    Google Scholar 

  • Hesse, M., 1984: An exine architecture model for viscin threads. — Grana 23: 69 —175.

    Google Scholar 

  • Hutchinson, G. E., 1967: A treatise on limnology, 2. Introduction to lake biology and the phytoplankton. New York: Wiley.

    Google Scholar 

  • Knoll, F., 1932: Über die Fernverbreitung des Blütenstaubes durch den Wind. — Forsch. Fortschr. 8: 301— 302.

    Google Scholar 

  • Lee, S. T., 1978: A factor analysis study of the functional significance of angiosperm pollen. Syst. Bot. 3: 1–19.

    Google Scholar 

  • Lewis, W. H., 1977: Pollen exine morphology and its adaptive significance. Sida 7: 95–102.

    Google Scholar 

  • Niklas, K. J., 1981: Simulated wind pollination and airflow around ovules of some early seed plants. Science 211: 275 — 277.

    Google Scholar 

  • Niklas, K. J., 1981: Airflow patterns around some early seed plant ovules and cupules: Implications concerning efficiency in wind pollination. — Amer. J. Bot. 68: 635 — 650.

    Google Scholar 

  • Niklas, K. J., 1982: Simulated and empiric wind pollination patterns of conifer ovulate cones. — Proc. Natl. Acad. Sci. U.S.A. 79: 510–514.

    Google Scholar 

  • Niklas, K. J., 1983: The influence of Paleozoic ovule and cupule morphologies on wind pollination. Evolution 37: 968 — 986.

    Google Scholar 

  • Niklas, K. J., 1984: The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. — Amer. J. Bot. 71: 356–374.

    Article  Google Scholar 

  • Niklas, K. J., 1985: Wind pollination of Taxus cuspidata. — Amer. J. Bot. 72: 1–13.

    Article  Google Scholar 

  • Niklas, K. J., 1985: The aerodynamics of wind pollination. — Bot. Rev. 51: 328 — 386.

    Google Scholar 

  • Niklas, K. J., 1985: Wind pollination — a study in controlled chaos. — Amer. Sci. 73: 462 — 470.

    Google Scholar 

  • Niklas, K. J., 1987: Pollen capture and wind-induced movement of compact and diffuse grass panicles: implications for pollination efficiency. — Amer. J. Bot. 74: 74 — 89.

    Google Scholar 

  • Buchmann, S. L., 1985: Aerodynamics of wind pollination in Simmondsia chinensis (LINK) SCHNEIDER. - Amer. J. Bot. 72: 530 — 539.

    Google Scholar 

  • Buchmann, S. L., 1987: The aerodynamics of pollen capture in two sympatric Ephedra species. — Evolution 41: 104 —123.

    Google Scholar 

  • Kerchner, V., 1986: Aerodynamics of Ephedra trifurcata: 1. Pollen grain velocity fields around stems bearing ovules. — Amer. J. Bot. 73: 966 — 979.

    Google Scholar 

  • Kerchner, V., 1986: Aerodynamics of Ephedra trifurcata. 2. Computer modelling of pollination efficiencies. — J. Mathemat. Biol. 24: 1— 24.

    Google Scholar 

  • Norstog, K., 1984: Aerodynamics and pollen grain depositional patterns on cycad megastrobili: implications on the reproduction of three cycad genera (Cycas, Dioon, and Zamia). — Bot. Gaz. 145: 92 —104.

    Google Scholar 

  • Paw K. T., 1982: Pollination and airflow patterns around conifer ovulate cones. Science 217: 442 — 444.

    Google Scholar 

  • Paw K. T., 1983: Conifer ovulate cone morphology: implications on pollen impaction patterns. Amer. J. Bot. 70: 568 — 577.

    Google Scholar 

  • Payne, W. W., Skvarla, J. J., 1970: Electron microscope study of Ambrosia pollen (Compositae: Ambrosieae). — Grana 10: 89 — 100.

    Google Scholar 

  • Penning de Vries, F. W. T., Brunsting, A. H. M., Van Laar, H. H., 1974: Products, requirements and efficiency of biosynthesis: a quantitative approach. — J. Theor. Biol. 45: 339 — 377.

    Google Scholar 

  • Praglowski, J., Grafström, E., 1980: The pollen morphology of the tribe Calenduleae with reference to taxonomy. — Bot. Not. 133: 177 —188.

    Google Scholar 

  • Proctor, M., Yeo, P., 1972: The pollination of flowers. — New York: Taplinger Publishing Co. Raynor, G. S., Ogden, E. C., Hayes, J. V., 1970: Dispersion and deposition of ragweed pollen from experimental sources. — J. Appl. Meteorol. 9: 885 — 895.

    Google Scholar 

  • Robbins, R. R., Dickinson, D. B., Rhodes, A. M., 1979: Morphometric analysis of pollen from four species of Ambrosia (Compositae). — Amer. J. Bot. 66: 538 — 545

    Google Scholar 

  • Scheppegrell, W., 1917: Hay-fever and hay-fever pollens. — Arch. Internal Med. 19: 959 — 980.

    Google Scholar 

  • Skvarla, J. J., Larson, D. A., 1965: An electron microscopic study of pollen morphology in the Compositae with special reference to the Ambrosiinae. — Grana Palynol. 6: 210 — 269.

    Google Scholar 

  • Raven, P. H., Chissoe, W. F., Sharp, M., 1978 a: an ultrastructural study of viscin threads in Onagraceae pollen. — Pollen & Spores 20: 5 — 143.

    Google Scholar 

  • Turner, B. L., Patel, V. C., Tomb, A. S., 1978 b: Pollen morphology in the Compositae and in morphologically related families. — In Heywood, V. H., Harborne, J. B., Turner, B. L., (Eds.): The biology and chemistry of the Compositae,pp. 141— 248. — New York: Academic Press.

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J., 1981: Biometry. 2nd edn. — San Francisco: W. H. Freeman. Southworth, D., 1988: Isolation of exines from gymnosperm pollen. — Amer. J. Bot. 75: 15–21.

    Google Scholar 

  • Vogel, S., 1981: Life in moving fluids. — Boston: Willard Grant.

    Google Scholar 

  • Waha, M., 1984: Zur Ultrastruktur und Funktion pollenverbindender Fäden bei Ericaceae und anderen Angiospermenfamilien. — Pl. Syst. Evol. 147: 189 — 203.

    Google Scholar 

  • Whitehead, D. R., 1969: Wind pollination and the angiosperms: evolutionary and environmental considerations. — evolution 23: 28 — 35.

    Google Scholar 

  • Whitehead, D. R., 1983: Wind pollination: some ecological and evolutionary perspectives. — In REAL, L., (Ed.): Pollination biology, pp. 97 —108. — New York: Academic Press.

    Google Scholar 

  • Wodehouse, R. P., 1935: Pollen grains. — New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this paper

Cite this paper

Bolick, M.R. (1990). The pollen surface in wind-pollination with emphasis on the Compositae . In: Hesse, M., Ehrendorfer, F. (eds) Morphology, Development, and Systematic Relevance of Pollen and Spores. Plant Systematics and Evolution, vol 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9079-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9079-1_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9081-4

  • Online ISBN: 978-3-7091-9079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics