Skip to main content

Probabilistic Analysis of Graph Algorithms

  • Chapter
Computational Graph Theory

Part of the book series: Computing Supplementum ((COMPUTING,volume 7))

Abstract

Probabilistic Analysis of Graph Algorithms. We review some of the known results on the average case performance of graph algorithms. The analysis assumes that the problem instances are randomly selected from some reasonable distribution of problems. We consider two types of problem. The first sort is polynomially solvable in the worst case but there are algorithms with better average case performance. In particular we consider the all-pairs shortest path problem, the minimum spanning tree problem, the assignment problem and the cardinality matching problem in sparse graphs. Our second category of problems consists of problems which seem hard in the worst-case but still have algorithms with good average case performance. In particular we consider three NP-Complete problems; the Hamilton cycle problem, the graph bisection problem and graph colouring. In addition we consider the graph isomorphism problem whose exact complexity is still undetermined.

AMS Subject Classifications: 68Q25, 05C8O.

Zusammenfassung

Probabilistische Analyse von Graphenalgorithmen. Die Arbeit bietet einen Überblick über Ergebnisse zur durchschnittlichen Leistungsfähigkeit von Graphenalogrithmen, wobei stets vorausgesetzt wird, daß die Problembeispiele zufällig gemäß einer ‘vemünftigen’ Wahrscheinlichkeitsverteilung gewählt werden. Wir betrachten zwei Problemtypen. Der erste Typ ist polynomial lösbar im schlechtesten Fall, jedoch existieren nicht-polynomiale Lösungsalgorithmen mit besserer durchschnittlicher Leistungs-fähigkeit. Insbesondere betrachten wir das Problem der kürzesten Wege zwischen allen Knotenpaaren, das Problem der Minimalbäume, das Zuordnungsproblem und das ungewichtete Matchingproblem in dünn belegten Graphen. Der zweite Problemtyp besteht aus Problemen, die im schlechtesten Fall äuBerst schwer zu losen erscheinen, wofür es aber weiterhin Lösungsalgorithmen mit guter durch-schnittlicher.Leistungsfähigkeit gibt. Insbesondere betrachten wir drei NP-vollständige Probleme: das Problem der Hamiltonkreise, das Bisektionsproblem für Graphen und das Färbungsproblem. Darüber hinaus wird das Graphenisomorphie-problem behandelt, dessen exakte Komplexität noch unbestimmt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ahn, C. Cooper, G. Cornuejols and A. M. Frieze, ‘Probabilistic analysis of a relaxation for the k-median problem’, Mathematics of Operations Research 13 (1988) 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aho, J. E. Hopcroft and J. D. Ullman, ‘The design and analysis of computer algorithms’, Addison-Wesley, Reading MA, 1974.

    MATH  Google Scholar 

  3. L. Babai, P. Erdos and S. M. Selkow, ‘Random graph isomorphisms’, SIAM Journal on Computing 9 (1980) 628–635.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Beardwood, J. H. halton and J. M. Hammersley, ‘The shortest path through many points’, Proceedings of the Cambridge Philosophical Society 55 (1959) 299–327.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bollobas, Random graphs, Academic Press, 1985.

    MATH  Google Scholar 

  6. B. Bollobas, ‘The chromatic number of random graphs’, Combinatorica 8 (1988) 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bollobas and P. Erdos, ‘Cliques in random graphs’, Mathematical Proceedings of the Cambridge Philosophical Society 80 (1976) 419–427.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bollobas, T. I. Fenner and A. M. Frieze, ‘An algorithm for finding Hamilton paths and cycles in random graphs’, Combinatorica 7 (1987) 327–342.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Boppana, ‘Eigenvalues and graph bisection: an average case analysis’, Proceedings of the 28th Annual IEEE Symposium on the Foundations of Computer Science (1987) 280–285.

    Google Scholar 

  10. L. Babai and L. Kucera, ‘Canonical labelling of graphs in linear average time’, Proceedings of the 20th Annual IEEE Symposium on the Foundations of Computer Science (1979) 39–46.

    Google Scholar 

  11. S. Bhatt and T. Leighton, ‘A framework for solving VLSI graph problems’, Journal of Computer and System Sciences 28 (1984) 300–343.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, ‘Graph bisection algorithms with good average case behaviour’, Combinatorica 6.

    Google Scholar 

  13. N. Calkin and A. M. Frieze, ‘Probabilistic analysis of a parallel algorithm for finding a maximal independent set’, to appear.

    Google Scholar 

  14. V. Chvatal, ‘Determining the stability number of a graph’, SIAM Journal on Computing 6 (1977) 643–662.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Cheriton and R. E. Tarjan, ‘Finding minimum spanning trees’, SIAM Journal on Computing 5 (1976) 724–742.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Coppersmith, P. Raghavan and M. Tompa, ‘Parallel graph algorithms that are efficient on average’, Proceedings of the 28th Annual IEEE Symposium on the Foundations of Computer Science (1987) 260–270.

    Google Scholar 

  17. G. B. Dantzig, ‘On the shortest route through a network’, Management Science 6 (1960) 187–190.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. E. Dyer and A. M. Frieze, ‘The solution of some random NP-hard problems in polynomial expected time’ to appear in Journal of Algorithms.

    Google Scholar 

  19. M. E. Dyer, A. M. Frieze and C. J. H. McDiarmid, ‘On linear programs with random costs’, Mathematical Programming 35 (1986) 3–16.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Edmonds and R. M. Karp, ‘Theoretical improvements in algorithmic efficiency for network flow problems’, Journal of the ACM 19 (1972) 248–264.

    Article  MATH  Google Scholar 

  21. P. Erdos and A. Renyi, ‘On random graphs 1’, Publ. Math. Debrecen 6 (1959) 290–297.

    MathSciNet  Google Scholar 

  22. P. Erdos and A. Renyi, ‘The evolution of a random graphs’, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17–61.

    MathSciNet  Google Scholar 

  23. P. Erdos and A. Renyi, ‘On the strength of connectedness of a random graph’, Acta Math. Acad. Sci. Hungar. 12 (1961) 261–267.

    Article  MathSciNet  Google Scholar 

  24. P. Erdos and A. Renyi, ‘On the existence of a factor of degree one of a connected random graph’, Acta Math. Inst. Acad. Sci. Hungar. 1 7 (1966) 359–368.

    Article  Google Scholar 

  25. T. I. Fenner and A. M. Frieze, ‘On the existence of Hamilton cycles in a class of random graphs’, Discrete Mathematics 45 (1983) 301–305.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. L. Fredman, ‘On the decision tree complexity of the shorest path problem’, Proceedings of the 16th Annual IEEE Symposium on the Foundations of Computer Science ((1985) 101–105.

    Google Scholar 

  27. M. L. Fredman and R. E. Tarjan, ‘Fibonnacci heaps and their uses in network optimisation problems’, Proceedings of the 25th Annual IEEE Symposium on the Foundations of Computer Science (1984) 338–346.

    Google Scholar 

  28. A. M. Frieze, ‘Finding Hamilton cycles in sparse random graphs’, Journal of Combinatorial Theory B44 (1988) 230–250.

    Article  MathSciNet  Google Scholar 

  29. A. M. Frieze, ‘An algorithm for finding Hamilton cycles in random digraphs’, Journal of Algorithms 9 (1988) 181–204.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. M. Frieze, ‘On the exact solution of random travelling salesman problems with medium sized integer costs’, SIAM Journal on Computing 16 (1987) 1052–1072.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. M. Frieze, ‘Parallel algorithms for finding Hamilton cycles in random graphs’, Information Proceesing Letters 25 (1987) 111–117.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. M. Frieze, ‘On the value of a random minimum spanning tree problem’, Discrete Applied Mathematics 10 (1985) 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. M. Frieze and G. R. Grimmett, The shorest path problem for graphs with random arc-lengths’, Discrete Applied Mathematics 10 (1985) 57–77.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. M. Frieze and L. Kucera, ‘Parallel colouring of random graphs’, to appear in Annals of Discrete Mathematics.

    Google Scholar 

  35. A. M. Frieze and C. J. H. McDiarmid, ‘On random minimum length spanning trees’, to appear in Combinatorica.

    Google Scholar 

  36. A. M. Frieze and L. Rudolph, ‘A parallel algorithm for all-pairs shortest paths in a random graph’, Proceedings of the 22nd Allerton Conference on Communication, Control and Computing (1985) 663–670.

    Google Scholar 

  37. Z. Furedi and M. Komlos, ‘The eigenvalues of random symmetric matrices’ Combinatorica 1 (1981) 233–241.

    Google Scholar 

  38. H. N. Gabow, Z. Galil and T. Spencer, ‘Efficient implementation of graph algrithms using contraction’, Proceedings of the 25th Annual IEEE Symposium on the Foundations of Computer Science (1984) 347–357.

    Google Scholar 

  39. M. R. Garey, D. S. Johnson and L. Stockmeyer, ‘Some simplified NP-complete graph problems’, Theoretical Computer Science 1 (1976) 237–267.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. R. Grimmett and C. J. H. McDiarmid, ‘On colouring random graphs’ Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975) 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. M. Karp, ‘An algorithm to solve the m × n assignment problem in expected time O(mnlogn)’, Networks 10 (1980) 143–152.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. M. Karp, ‘Probabilistic analysis of a canonical numbering algorithm for graphs’, Proceedings of Symposia in Pure Mathematics, Volume 34, 1979, American Mathematical Society, Providence, RI, 365–378.

    MathSciNet  Google Scholar 

  43. R. M. Karp, ‘An upper bound on the expected cost of an optimal assignment’, Discrete Algorithms and Complexity: Proceedings of the Japan—US Joint Seminar (D. Johnson et al, eds.), 1–4, Academic Press, New York, 1987.

    Google Scholar 

  44. R. M. Karp, ‘Probabilistic analysis of partitioning algorithms for the traveling salesman problem in the plane’, Mathematics of Operations Research 2 (1977) 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Karp, J. K. Lenstra, C. J. H. McDiarmid and A. H. G. Rinnooy Kan’, Probabilistic analysis of combinatorial algorithms: an annotated bibligoraphy’, in Comminatorial Optimisation: Annotated Bibliographies, (M. O’Heigeartaigh, J. K. Lenstra and A. H. G. Rinnooy Kan, eds.), John Wiley and Sons, New York, 1984.

    Google Scholar 

  46. R. M. Karp and M. Sipser, ‘Maximum matchings in sparse random graphs’, Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981) 364–375.

    Google Scholar 

  47. R. M. Karp and R. E. Tarjan, ‘Linear expected time algorithms for connectivity problems’, Journal of Algorithms 1 (1980) 374–393.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Komlos and E. Szemeredi, ‘Limit distributions for the existence of Hamilton cycles in a random graph’, Discrete Mathematics 43 (1983) 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Kucera, ‘Canonical labeling of regular graphs in linear expected time’ Proceedings of the 28th Annual IEEE Symposium on the Foundations of Computer Science (1987) 271–279.

    Google Scholar 

  50. T. G. Kurtz, ‘Solutions of ordinary differential equations as limits of pure jump Markov processes’, Journal of Applied Probability 7 (1970) 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  51. E. L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York 1976.

    Google Scholar 

  52. A. J. Lazarus, ‘The assignment problem with uniform (0,1) cost matrix’, B. A. Thesis, Department of Mathematics, Princeton University, Princton, N. J.

    Google Scholar 

  53. R. J. Lipton, ‘The beacon set approach to graph isomorphism’, Yale University, pre-print.

    Google Scholar 

  54. T. Luczak, ‘The chromatic number of random graphs’, Combinatorica to appear.

    Google Scholar 

  55. C. J. H. McDiarmid, ‘Determining the chromatic number of a graph’, SI AM Journal on Computing 8 (1979) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. J. H. McDiarmid, ‘On some conditioning results in the analysis of algorithms’, Discrete Applied Mathematics 10 (1985) 197–201.

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Micali and V. V. Vazirani, ‘An <eq> algorithm for finding maximum matching in general graphs’, Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science (1980) 17–27.

    Google Scholar 

  58. A. Moffat and T. Takaoka, ‘An all pairs shortest path algorithm with expected running time O(n 2 logn)’, Proceedings of the 26th Annual IEEE Symposium on the Foundations of Computer Science (1985) 101–105.

    Google Scholar 

  59. A. Moffat and T. Takaoka, ‘An all pairs shortest path algorithm with expected time O(n 2 logn)’, SIAM Journal on Computing 16 (1987) 1023–1031.

    Article  MathSciNet  MATH  Google Scholar 

  60. E. M. Palmer, Graphical evolution, Wiley-Interscience, 1985.

    MATH  Google Scholar 

  61. C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, Prentice-Hall, 1982.

    MATH  Google Scholar 

  62. E. Shamir and E. Upfal, ‘Sequential and distributed graph colouring algorithms with performance analysis in random graph spaces’, Journal of Algorithms 5 (1984) 488–501.

    Article  MathSciNet  MATH  Google Scholar 

  63. P. M. Spira, ‘A new algorithm for finding all shortest paths in a graph of positive arcs in average time O(nlogn)’ SIAM Journal on Computing 2 (1973) 28–32.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. M. Steele, ‘On Frieze’s C(3) limit for lengths of minimal spanning trees’, Discrete Applied Mathematics.

    Google Scholar 

  65. J. M. Steele, ‘Subadditive Euclidean functionals and non-linear growth in geometric probability’, Annals of Probability 9 (1981) 365–376.

    Article  MathSciNet  MATH  Google Scholar 

  66. D. D. Sleator and R. E. Tarjan, ‘Self-adjusting heaps’, SIAM Journal on Computing 15 (1986) 52–69.

    Article  MathSciNet  MATH  Google Scholar 

  67. N. Tomizawa, ‘On some techniques useful for solution of transportation problems’, Networks 1 (1972) 173–194.

    Google Scholar 

  68. J. S. Turner, ‘Almost all fe-colorable graphs are easy to color’, Journal of Algorithms 9 (1988) 63–82.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Vuillemin, ‘A data structure for manipulating priority queses’, Communications of the ACM 21 (1978) 309–315.

    Article  MathSciNet  MATH  Google Scholar 

  70. D. Walkup, ‘On the expected value of a random assignment problem’, SIAM Journal on Computing 8 (1979) 440–442.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Frieze, A.M. (1990). Probabilistic Analysis of Graph Algorithms. In: Tinhofer, G., Mayr, E., Noltemeier, H., Syslo, M.M. (eds) Computational Graph Theory. Computing Supplementum, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9076-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9076-0_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82177-0

  • Online ISBN: 978-3-7091-9076-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics