Skip to main content

The effects of aging on MAO activity and amino acid levels in rat brain

  • Chapter

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 29))

Summary

The possibility that age-related changes in amino acid levels in various rat brain areas might correlate with modifications of monoamine oxidase (MAO) activity, already found with aging, has been examined.

Taurine, aspartic acid and glutamic acid levels were found to be unchanged or decreased with age, whereas GABA and glutamine concentrations increased or remained unchanged. Serine and glycine (except in pons-medulla) levels were found to be unaffected by age. The increase in total MAO activity with aging in some brain areas might contribute to the changes in amino acid levels. Likewise, the possible influence of age-induced changes in activity of various enzymes involved in H2O2 and NH3 detoxication and in amino acid biosynthesis on rat brain amino acid levels are considered. Oral administration of clorgyline or 1-deprenyl to young rats did not significantly modify the concentrations of most brain amino acids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen IC, Grieve A, Griffiths R (1986) Differential changes in the content of amino acid neurotransmitters in discrete regions of the rat brain prior to the onset and during the course of homocysteine-induced seizures. J Neurochem 46: 1582–1592.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG, Storey BT (1983) Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 29: 548–555.

    Article  PubMed  CAS  Google Scholar 

  • Aprison MH, Daly EC (1978) Biochemical aspects of transmission at inhibitory synapses: the role of glycine. Adv Neurochem 3: 203–294.

    CAS  Google Scholar 

  • Aprison MH, Nadi NS (1978) Glycine: inhibition from the sacrum to the medulla. NATO Adv Study Inst Ser (Ser A): 531-570.

    Google Scholar 

  • Aprison MH, Shank RP, Davidoff RA (1969) A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp Biochem Physiol 28: 1345–1355.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF, Girard G, Giguère JF (1988) Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J Neurochem 51: 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Cao Danh H, Strolin Benedetti M, Dostert P (1983) Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. J Neurochem 40: 1003–1007.

    Article  Google Scholar 

  • Cao Danh H, Strolin Benedetti M, Dostert P (1984) Differential changes in monoamine oxidase A and B activity in aging rat tissues. In: Tipton KF, Dostert P, Strolin Benedetti M (eds) Monoamine oxidase and disease. Prospects for therapy with reversible inhibitors. Academic Press, London, pp 301–317.

    Google Scholar 

  • Cao Danh H, Strolin Benedetti M, Dostert P (1985) Age-related changes in glutamine synthetase activity of rat brain, liver and heart. Gerontology 31: 95–100.

    Article  Google Scholar 

  • Cooper AJL, Fitzpatrick SM, Ginos JZ, Kaufman C, Dowd P (1983) Inhibition of glutamate-aspartate transaminase by β-methylene-DL-aspartate. Biochem Pharmacol 32: 679–689.

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Lai JCK (1987) Cerebral ammonia metabolism in normal and hyperam-monemic rats. Neurochem Pathol 6: 67–95.

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67: 440–519.

    PubMed  CAS  Google Scholar 

  • Davis J, Himwich WA (1975) Neurochemistry of the developing and aging mammalian brain. Adv Behav Biol 16: 329–357.

    CAS  Google Scholar 

  • De Koning-Verest IF (1980) Glutamine metabolism in ageing rat brain. Mech Ageing Dev 13: 83–92.

    Article  PubMed  Google Scholar 

  • Fitzpatrick SM, Cooper AJL, Hertz L (1988) Effects of ammonia and β-methylene-DL-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J Neurochem 51: 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  • Fonda ML, Acree DW, Auerbach SB (1973) The relationship of γ-aminobutyrate levels and its metabolism to age in brains of mice. Arch Biochem Biophys 159: 622–628.

    Article  CAS  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]DOPA in various regions of the brain. J Neurochem 13: 655–669.

    Article  PubMed  CAS  Google Scholar 

  • Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59: 386–396.

    Article  PubMed  CAS  Google Scholar 

  • Horn AS, Cuello AC, Miller RJ (1974) Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. J Neurochem 22: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ, Sebring LA (1986) Towards a unifying theory for the actions of taurine. Trends Pharmacol Sci 7: 481–485.

    Article  CAS  Google Scholar 

  • Jones BN, Gilligan JP (1983) o-Phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr 266: 471–482.

    Article  PubMed  CAS  Google Scholar 

  • Kanungo MS, Kaur G (1969) Regulatory changes in enzymes as a function of age of the rat. Proceedings of the 8th International Congress of Gerontology, vol 1. pp 356–359.

    Google Scholar 

  • Lai JCK, Cooper AJL (1986) Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47: 1376–1386.

    Article  PubMed  CAS  Google Scholar 

  • Lai JCK, Leung TKC, Lim L (1981) Brain regional distribution of glutamic acid decarb-oxylase, choline acetyltransferase, and acetylcholinesterase in the rat: effects of chronic manganese chloride administration after two years. J Neurochem 36: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie J, Giguère JF, Pomier Layrargues G, Butterworth RF (1987) Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J Neurochem 49: 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Taniko T, Kuriyama K (1982) Therapeutic effect of taurine administration on carbon tetrachloride-induced hepatic injury. Jpn J Pharmacol 32: 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Rajeswari TS, Radha E (1984) Metabolism of the glutamate group of amino acids in rat brain as a function of age. Mech Ageing Dev 24: 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumari L, Subbalakshmi GYCV, Murthy CRK (1986) Acute effects of ammonia on the enzymes of citric acid cycle in rat brain. Neurochem Int 8: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Record CO, Buxton B, Chase RA, Curzon G, Murray-Lyon IM, Williams R (1976) Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. Eur J Clin Invest 6: 387–394.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Al-Therib MJ (1974) Putrescine catabolism in mammalian brain. Biochem J 144: 29–35.

    PubMed  CAS  Google Scholar 

  • Schultz V, Lowenstein JM (1976) Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain. J Biol Chem 251: 485–492.

    PubMed  CAS  Google Scholar 

  • Strolin Benedetti M, Cao Danh H, Dostert P (1986) Age-related changes in brain MAO and in enzymes involved in detoxication processes of MAO-generated compounds. In: Biggio G, Spano PF, Toffano G, Gessa GL (eds) Modulation of central and peripheral transmitter function. Liviana Press, Padova, pp 255–267.

    Google Scholar 

  • Strolin Benedetti M, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38: 555–561.

    Article  Google Scholar 

  • Timiras PS, Hudson DB, Oklund S (1973) Changes in central nervous system free amino acids with development and aging. Prog Brain Res 40: 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Van der Heyden JAM, Korf J (1978) Regional levels of GABA in the brain: rapid semi-automated assay and prevention of postmortem increase by 3-mercapto-propionic acid. J Neurochem 31: 197–203.

    Article  PubMed  Google Scholar 

  • Westerink BHC, Korf J (1976) Comparison of effects of drugs on dopamine metabolism in the substantia nigra and the corpus striatum of rat brain. Eur J Pharmacol 40: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Wright CE, Tallan HH, Lin YY (1986) Taurine: biological update. Ann Rev Biochem 55: 427–453.

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M, Nissim I, Pleasure D (1988) Astrocyte metabolism of [15N]glutamine: implications for the glutamine-glutamate cycle. J Neurochem 51: 843–850.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Benedetti, M.S., Cini, M., Fusi, R., Marrari, P., Dostert, P. (1990). The effects of aging on MAO activity and amino acid levels in rat brain. In: Youdim, M.B.H., Tipton, K.F. (eds) Neurotransmitter Actions and Interactions. Journal of Neural Transmission, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9050-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9050-0_25

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82142-8

  • Online ISBN: 978-3-7091-9050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics