Skip to main content

Cytochalasin-Induced Ultrastructural Alterations in Nicotiana Pollen Tubes

  • Chapter
Cell Dynamics

Part of the book series: Protoplasma ((PROTOPLASMA,volume 2))

Summary

Cytochalasin causes rapid inhibition of cytoplasmic streaming and growth in pollen tubes. In the present study we describe the ultra-structural changes that occur in pollen tubes of Nicotiana alata following treatment with cytochalasins. We utilize rapid freeze fixation and freeze substitution as a method superior to conventional chemical fixation for the preservation of cytoskeletal elements and membrane systems. The results show that either cytochalasin B or cytochalasin D causes microfilaments to form massive bundles throughout the cytoplasm, including the tipmost region of the pollen tube. Other effects include a loss of organelle zonation and vesicle aggregation in the tube tip, the accumulation of large stacks and coils of endoplasmic reticulum, and a crystalline rearrangement of a membrane component of some of the vacuoles. Following removal of cytochalasin the pollen tube ultrastructure returns to its normal configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CB:

cytochalasin B

CD:

cytochalasin D

CF:

conventional chemical fixation

DMSO:

dimethylsulfoxide

MES:

2(N-morpholino)ethanesulfonic acid

MF:

microfilament

MT:

microtubule

PEG:

polyethylene glycol

PM:

plasma membrane

RER:

rough endoplasmic reticulum

RF-FS:

rapid freeze fixation-freeze substitution

RP:

rhodamine labelled phalloidin

References

  • Atlas SJ, Lin S (1978) Dihydrocytochalasin B: biological effects and binding to 3T3 cells. J Cell Biol 76: 360–370

    Article  PubMed  CAS  Google Scholar 

  • Bonder EM, Mooseker MS (1986) Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament. J Cell Biol 102: 282–288

    Article  PubMed  CAS  Google Scholar 

  • Brown SS, Spudich JA (1981) Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 88: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ, Goldsmith MHM, Ray PM (1973) Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming. Planta 111: 279–296

    Article  CAS  Google Scholar 

  • Condeelis JS (1974) The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp Cell Res 88: 435–439

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA (1987) Effect of cytochalasin and phalloidin on actin. J Cell Biol 105: 1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure of Nicotiana alata pollen, its germination and early tube formation. Am J Bot 72: 719–727

    Article  Google Scholar 

  • Cresti M, Hepler PK, Tiezzi A, CiampoliniF (1986) Fibrillar structures in Nicotiana pollen: changes in ultrastructure during pollen activation and tube emission. In: MuLcahy DL, Mulcahy G, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York, pp 283–288

    Chapter  Google Scholar 

  • Derksen J, Pierson ES, Traas JA (1985) Microtubules in vegetative and generative cells of pollen tubes. Eur J Cell Biol 38: 142–148

    Google Scholar 

  • Franke WW, Heath W, Vander Woude WJ, Morre DJ (1972) Tubular and filamentous structures in pollen tubes: possible in- volvement as guide elements in protoplasmic streaming and vec- torial migration of secretory vesicles. Planta 105: 317–341

    Article  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation in Graptopetalum paraguayense. Planta 149: 181–195

    Article  CAS  Google Scholar 

  • Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110

    PubMed  CAS  Google Scholar 

  • Heath W, Franke WW, Van Der Woude WJ (1972) Cytochalasin stops tip growth in plants. Naturwissenschaften 59: 38a

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Ciampolini F (1986) Actin during pollen germination. J Cell Sci 86: 1–8

    CAS  Google Scholar 

  • Hoch HC, Howard RJ (1980) Ultrastructure of freeze-substituted hyphae of the Basidiomycete Laetisaria arvalis. Protoplasma 103: 281–297

    Article  Google Scholar 

  • Kamiya N (1981) Physical and chemical basis of cytoplasmic streaming. Ann Rev Plant Physiol 32: 205–236

    Article  CAS  Google Scholar 

  • Lancelle SA, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131: 153–165

    Article  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140: 141–150

    Article  Google Scholar 

  • Lin S (1978) Interaction of cytochalasins with the red blood cell membrane and its associated proteins. In: Tanenbaum S (ed) Cytochalasins. North Holland, Amsterdam, pp 499–520

    Google Scholar 

  • Mac’lean-Fletcher S, Pollard TD (1980) Mechanism of action of cytochalasin B on actin. Cell 20: 329–341

    Article  Google Scholar 

  • Mascarenhas JP, Lafountain J (1972) Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 4: 1114

    Article  Google Scholar 

  • Mersey B, Mccully ME (1978) Monitoring the course of fixation of plant cells. J Microsc 114: 49–76

    Article  Google Scholar 

  • Miranda AF, Godman GC, Tanenbaum SW (1974) Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol 62: 406–423

    Article  PubMed  CAS  Google Scholar 

  • Perdue TD, Parthasarathy MV (1985) In situ localization of F-actin in pollen tubes. Eur J Cell Biol 39: 13–20

    Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci 49: 261–272

    PubMed  CAS  Google Scholar 

  • Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    PubMed  CAS  Google Scholar 

  • Pierson ES, Derksen J, Traas JA (1986) Organization of micro-filaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41: 14–18

    Google Scholar 

  • Rathke PC, Seib E, Weber K, Osborn M, Franke WW (1977) Rod-like elements from actin-containing microfilament bundles observed in cultured cells after treatment with cytochalasin A ( CA ). Exp Cell Res 105: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Seagull RW, Heath IB (1979) The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol 20: 184–188

    PubMed  CAS  Google Scholar 

  • Seagull RW, Heath IB (1980) The differential effects of cytochalasin B on microfilament populations and cytoplasmic streaming. Protoplasma 103: 231–240

    Article  CAS  Google Scholar 

  • Tiwari SC, Wick SM, Williamson RE, Gunning BES (1984) Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol 99: 63s - 69s

    Article  PubMed  CAS  Google Scholar 

  • Traas JA, Braat P, Emons AMC, Meekes H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76: 303–320

    PubMed  CAS  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Rathke PC, Osborn M, Franke WW (1976) Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B ( CB ). Exp Cell Res 102: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Yahara I, Fumiko J, Sekita S, Yoshihira K, Natori A (1982) Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol 92: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Zhang H-Q, Croes AF (1982) A new medium for pollen germination in vitro. Acta Bot Neerl 31: 113–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Dr. Noburo Kamiya on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this chapter

Cite this chapter

Lancelle, S.A., Hepler, P.K. (1988). Cytochalasin-Induced Ultrastructural Alterations in Nicotiana Pollen Tubes. In: Tazawa, M. (eds) Cell Dynamics. Protoplasma, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9011-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9011-1_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9013-5

  • Online ISBN: 978-3-7091-9011-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics