Skip to main content

Experimental Models of Head Injury

  • Chapter
Modern Concepts in Neurotraumatology

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 36))

Summary

Experimental research in studies of head injury may be directed along theoretical, mechanical and experimental animal and clinical lines. The parameter of the results compared may thus be the mechanics of skull or the skull contents, pathophysiological changes or pathomorphological lesions. Due to the variation of the daily accidents and resulting injuries each series of problems must be studied with suitable technique.

Often the various types of studies determine the possibility of interpreting the results for clinical analysis and prevention. However, this is often possible if all experimental conditions and parameters studied are precisely defined.

Movements, deformations of skull and the intracranial contents, results from rotational and angular acceleration and velocities as well as the direction and the site of impact in the human being must always be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JH, Graham DI, Gennarelli TA (1983) Head injury in man and experimental animals: Neuropathology. Acta Neurochir (Wien) [Suppl] 32, 15–30

    CAS  Google Scholar 

  2. Aldman B, Thorngren L, Ljung C (1981) Patterns of deformation in the brain models under rotational motion. Proceedings of a Workshop on Head and Neck Injury Criteria. U.S. Department of Transportation. National Highway Traffic Safety Administration. Washington, pp 163–168

    Google Scholar 

  3. Allen AR (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA 57: 11: 878–880

    Article  Google Scholar 

  4. Caveness WF, Walker AE (eds) (1966) Proceedings of head injury conference. University of Chicago, Lippincott

    Google Scholar 

  5. Clemedson CJ, Falconer B, Frankenberg L, Jönsson A, Wennerstrand J (1973) Head injuries caused by small-calibre, high velocity bullets. An experimental study. Z Rechtsmedizin 73: 103–114

    Article  CAS  Google Scholar 

  6. Clubb R, Maxwell R, Chou S (1980) Experimental brain injury in the dog. The pharmacological effects of pentobarbital and sodium nitroprusside. J Neurosurg 52: 189–196

    Article  PubMed  CAS  Google Scholar 

  7. Crockard HA, Brown FD, Trimble J, Mullan JF (1977) Somatosensory evoked potentials, cerebral blood flow and metabolism following cerebral missile trauma in monkeys. Surg Neurol 7: 281–287

    PubMed  CAS  Google Scholar 

  8. Crockard A, Iannotti F, Kang J (1982) Posttraumatic Edema in the Gerbill. In: Grossman R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 159–168

    Google Scholar 

  9. Denny-Brown D, Russel WR (1941) Experimental cerebral concussion. Brain 64: 93–164

    Article  Google Scholar 

  10. Dohrmann GJ, Panjabi MM (1976) Standardized spinal cord trauma: Biomechanical parameters and lesion volume. Surg Neurol 6: 263–267

    PubMed  CAS  Google Scholar 

  11. Dohrmann GJ, Panjabi MM, Banks D (1978) Biomechanics of experimental spinal cord trauma. J Neurosurg 48: 993–1001

    Article  PubMed  CAS  Google Scholar 

  12. McElhaney JH, Fogle JL, Melvin JW, et al. (1970) Mechanical properties of cranial bone. J Biomech 3: 495–512

    Article  PubMed  CAS  Google Scholar 

  13. McElhaney JH, Melvin JW, Roberts VL, Portnoy HD (1973) Dynamic characteristics of the tissues of the head. Perspectives in Biomedical Engineering: Kenedi RM (ed). Macmillan Press Ltd, London, pp 215–222

    Google Scholar 

  14. McElhaney J, Stalnaker R, Roberts V (1973) Biomechanical aspects of head injury. Human impact response. Plenum Press, pp 85–112

    Google Scholar 

  15. Engin AE (1969) Axisymmetric response of a fluid-filled spherical shell to a local radial impulse-a model for head injury. J Biomech 2: 325–341

    Article  PubMed  CAS  Google Scholar 

  16. Fallenstein GT, Hulce VD, Melvin JW (1969) Dynamic mechanical properties of human brain tissue. J Biomech 2: 217–226

    Article  PubMed  CAS  Google Scholar 

  17. Friede R (1958) Biophysics of concussion (Neurohistopathological studies). WADC Tech Rep 58–193, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  18. Gadd C (1981) Head injury discussion paper. Proceedings of a Workshop on Head and Neck Injury Criteria. U.S. Department of Transportation. National Highway Traffic Safety Administration, Washington, pp. 177–182

    Google Scholar 

  19. Gennarelli T, Segawa H, Wald U, et al. (1982) Physiological response to angular acceleration of the head. In: Grossman R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 129–140

    Google Scholar 

  20. Gennarelli TA (1983) Head injury in man and experimental animals: clinical aspects. Acta Neurochir (Wien) [Suppl] 32: 113

    Google Scholar 

  21. Gennarelli T, Marcincin R, Thibault L, Thompson C (1983) Effect of direction of head movement on ICP in experimental head injury. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure. Springer, Berlin Heidelberg New York, pp 483–486

    Chapter  Google Scholar 

  22. German W, Page W, Nims L (1947) Cerebral blood flow and cerebral oxygen consumption in experimental intracranial injury. Trans Am Neurol Ass 72: 86–88

    CAS  Google Scholar 

  23. von Gierke HE (1966) On the dynamics of some head injury mechanisms. In: Caveness WF, Walker AE (eds) Head Injury Conf Proc. Lippincott, Philadelphia, pp 383–396

    Google Scholar 

  24. Gold A, Hance H, Kornhauser M, Lawton R (1962) Impact tolerance of restrained mice as a function of velocity change and average deceleration. Aerospace Med 33: 204–208

    PubMed  CAS  Google Scholar 

  25. Goldsmith W (1966) The physical processes producing head injuries. In head injury Conf Proc Caveness WF, Walker AE (eds) pp 350–382

    Google Scholar 

  26. Goldsmith W (1972) Biomechanics of head injury. In: Fung YC, Anliker M, Perrone ‘N (eds) Biomechanics. Its foundation and objectives. Prentice-Hall, New Jersey, pp 585–634

    Google Scholar 

  27. Gosch HH, Gooding E, Schneider RC (1970) The lexan calvarium for the study of cerebral response of acute trauma. J Trauma 10: 370–376

    Article  PubMed  CAS  Google Scholar 

  28. Gray J, Ritchie JM (1954) The effects of stretch on single myelinated nerve fibers. J Physiol 124: 84–99

    PubMed  CAS  Google Scholar 

  29. Groat RA, Windle WF, Magoun HW (1945) Functional and structural changes in the monkey’s brain during and after concussion. J Neurosurg 2: 26–35

    Article  Google Scholar 

  30. Gross AG (1958) A new theory on the dynamics of brain concussion and brain injury. J Neurosurg 15: 548–561

    Article  PubMed  CAS  Google Scholar 

  31. Grubb R, Naumann R, Ommaya A (1970) Respiration and the cerebrospinal fluid in experimental cerebral concussion. J Neurosurg 32: 320–329

    Article  PubMed  Google Scholar 

  32. Gurdjian ES, Lissner HR, Webster JE (1947) The mechanism of production of linear skull fracture. Further studies on deformation of the skull by the “stresscoat” technique. Surg Gynecol Obstet 85: 195–210

    PubMed  CAS  Google Scholar 

  33. Gurdjian ES, Webster JE, Lissner HR (1949) The mechanism of skull fracture. J Neurosurg 7: 106–114

    Google Scholar 

  34. Gurdjian ES, Lange WA, Patrick LM, Thomas LM (eds) (1970) Impact injury and crash protection. Ch C Thomas, Springfield

    Google Scholar 

  35. Gurdjian ES (1975) Re-evaluation of the biomechanics of blunt impact injury of the head. Surg Gynecol Obstet 140: 845–850

    PubMed  CAS  Google Scholar 

  36. Hamberger A, Rinder L (1966) Experimental brain concussion. J Neuropathol and Exp Neurol 25: 68–75

    Article  CAS  Google Scholar 

  37. Hayes R, Kulkarni P, Galinat B, Becker D (1982) Evidence for the release of endogenous opiate substances after experimental closed head injury in the cat. In: Grossman R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 179–188

    Google Scholar 

  38. Hayes R, Galinat B, Stâlhammar D, Becker D (1983) Effects of Naloxone on ICP and systemic cardiovascular responses after experimental closed head injury in the cat. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure V. Springer, Berlin Heidelberg New York, pp 572–576

    Chapter  Google Scholar 

  39. Hickling R, Wenner ML (1973) Mathematical model of a head subjected to an axisymmetric impact. J Biomech 6: 115–132

    Article  PubMed  CAS  Google Scholar 

  40. Higgins LS, Schmall RA (1967) A device for the investigation of head injury effected by non-deforming head acceleration. Proc 11th Stapp Car Crash Conf, Soc Auto Engg, New York, 57–72

    Google Scholar 

  41. Hirsch A, Ommaya A, Mahone R (1970) Tolerance of subhuman primate brain to cerebral concussion. In: Gurdjian, Lange, Patrick, Thomas (eds) Impact injury and crash protection. Ch C Thomas, Springfield, pp 352–369

    Google Scholar 

  42. Hodgson V (1967) Tolerance of the facial bones to impact. Am J Anat 120: 113–122

    Article  Google Scholar 

  43. Hollister NR, Jolley WP, Home RG (1958) Biophysics of concussion. WADC Tech Rep 58–193, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  44. Holbourn AH (1943) Mechanics of head injuries. Lancet 438–41

    Google Scholar 

  45. Holbourn AH (1945) The mechanics of brain injuries. Br Med Bull 3: 147–148

    Google Scholar 

  46. Joseph PH, Crist JDC (1972) On the evaluation of mechanical stresses in the human brain while in motion. Brain Res 26: 1535

    Google Scholar 

  47. Karvounis P, Smith M, Piccone V, et al. (1968) Effect of proteolytic enzymes in brain contusion after controlled head injury. Surg Forum 19: 416–417

    PubMed  CAS  Google Scholar 

  48. Kornhauser M, Gold, A (1962) Application of the impact sensitivity method to animate structures. Proceedings of a Symposium: Impact Acceleration Stress. National Academy of Sciences, National Research Council, Washington, pp 333–344

    Google Scholar 

  49. Lee YC, Advani SH (1970) Transient response of a sphere to symmetrical torsional loading-a head injury model. Math Biosci 6: 473–483

    Article  Google Scholar 

  50. Letcher F, Carrao PG, Ommaya AK (1973) Head injury in the chimpanzee: Part II. Spontaneous and evoked epidural potentials as indices of injury severity. J Neurosurg 39: 167–177

    Article  PubMed  CAS  Google Scholar 

  51. Lewis P, Ramirez R, McLaurin L (1968) Intracranial blood volume after head injury. Forum 19: 433–435

    CAS  Google Scholar 

  52. Lindgren SO (1966) Experimental studies of mechanical effects in head injury. Acta Chir Scand [Suppl] 360

    Google Scholar 

  53. Lindgren S, Rinder L (1969) Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 76: 340–351

    Article  Google Scholar 

  54. Lindgren S, Rinder L, Stâlhammar D, Asberg A (1973) Correlation between brain injuries and mechanical response of the head at impact. Injury 5: 31–34

    Article  PubMed  CAS  Google Scholar 

  55. Lindgren S, Rinder L (1965) Experimental studies in head injury. I. Some factors influencing results of model experiments. Biophysik 2: 320

    PubMed  CAS  Google Scholar 

  56. Lindgren S, Rinder L (1966) Experimental studies in head injury. II. Pressure propagation in “percussion-concussion”. Biophysik 3: 174

    Article  PubMed  CAS  Google Scholar 

  57. Lindgren S (1983) Interaction between the skull base and the skull contents at impact to the skull. In: Samii M, Brihaye J (eds) Traumatology of the skull base. Springer, Berlin Heidelberg New York, pp 44–49

    Chapter  Google Scholar 

  58. Liu YK, Chandran KB (1975) The exact solution to the translational acceleration of inviscid compressible fluid in rigid spherical shells. Math Biosci 24: 1–16

    Article  Google Scholar 

  59. Liu YK, Chandran KB, von Rosenberg DU (1975) Angular acceleration of viscoelastic ( Kelvin) material in a rigid spherical shell-a rotational head injury model. J Biomech 8: 285–292

    Article  Google Scholar 

  60. Ljung C (1975) A model for brain deformation due to rotation of the skull. J Biomech 8: 263–274

    Article  PubMed  CAS  Google Scholar 

  61. Ljung C, Lindgren S, Aldman B (1981) On the analytical approach to head injury criteria. Proceedings of a Workshop on Head and Neck Injury Criteria. U.S. Department of Transportation. National Highway Traffic Safety Administration. Washington, pp 194–197

    Google Scholar 

  62. Lombard, C, Ames S, Roth H, Rosenfeld S (1951) Voluntary tolerance of the human to impact accelerations of the head. J Aviation Med 22: 109–116

    CAS  Google Scholar 

  63. Löwenhielm P (1974) Dynamic Properties of the parasagittal bridging veins. Z Rechtsmedizin 74: 55–62

    Article  Google Scholar 

  64. Löwenhielm P (1974) Strain Tolerance of the vv. cerebri sup. (bridging veins) calculated from head-on collision test with cadavers. Z Rechtsmedizin 75: 131–144

    Article  Google Scholar 

  65. Marshall J, Jackson L, Langfitt T (1969) Brain swelling caused by trauma and arterial hypertension. Arch Neurol 21: 545–553

    Article  PubMed  CAS  Google Scholar 

  66. Masuzawa H, Nakamura N, Hirakawa K, et al. (1976) Experimental head injury and concussion in monkey using pure linear acceleration impact. Neurologica medico-chirurgica 16: 77–90

    Article  CAS  Google Scholar 

  67. Melvin JW, McElhaney JH, Roberts VL (1970) Development of a Mechanical Model of the human head-determination of tissue properties and synthetic substitute materials. Proc of 14th Stapp Car Crash Conference, pp 221–227.

    Google Scholar 

  68. Meyer J, Kondo A, Nomura F, et al. (1969) Cerebral hemodynamics and metabolism following brain trauma. Demonstration of luxury perfusion following brain-stem laceration. In: Brock M, Fieschi C, Ingvar DH, Lassen NH, Schurmann K (eds) Cerebral blood flow, clinical and experimental results. Springer, Berlin Heidelberg New York, pp 199–201

    Google Scholar 

  69. Meyer J, Kondo A, Nomura F, et al. (1970) Cerebral hemodynamics and metabolism following experimental head injury. J Neurosurg 32: 304–319

    Article  PubMed  CAS  Google Scholar 

  70. Miller J, Stanek A, Langfitt T (1971b) Effect of expanding intracranial lesions on cerebral blood flow. Surg Forum 22: 422–423

    PubMed  CAS  Google Scholar 

  71. Nakatani S, Ommaya AK (1973) A critical rate of cerebral compression. In: Brock M (ed) Intracranial pressure. Springer, Berlin Heidelberg New York

    Google Scholar 

  72. Nelson L, Auen E, Bourke R, et al. (1982) A comparison of animal head injury models developed for treatment modality evaluation. In: Grossman R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 117–128

    Google Scholar 

  73. Nilsson B, Pontén U, Voigt G (1977) Experimental head injury in the rat. Part I: Mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J Neurosurg 47: 241–251

    Article  PubMed  CAS  Google Scholar 

  74. Nilsson B, Pontén U (1977) Experimental head injury in the rat. Part 2: Regional brain energy metabolism in concussive trauma. J Neurosurg 47: 252–261

    Article  PubMed  CAS  Google Scholar 

  75. Nilsson B, Nordström CH (1977) Experimental head injury in the rat. Part 3: Cerebral blood flow and oxygen consumption after concussive impact acceleration. J Neurosurg 47: 262–273

    Article  PubMed  CAS  Google Scholar 

  76. Nilsson B, Nordström CH (1977) Rate of cerebral energy consumption in concussive head injury in the rat. J Neurosurg 47: 274–281

    Article  PubMed  CAS  Google Scholar 

  77. Ommaya AK (1968) The mechanical properties of tissues of the nervous system. J Biomech 2: 1–2

    Google Scholar 

  78. Ommaya AK, Faas F, Yarnell PR (1968) Whiplash injury and brain damage: An experimental study. J Am Med Assoc 204: 285–289

    Article  CAS  Google Scholar 

  79. Ommaya AK, Geller A, Parsons LC (1971) The effect of experimental head injury on one-trial learning in rats. Int J Neurose 1: 371–378

    Article  CAS  Google Scholar 

  80. Ommaya AK, Grubb Jr RL, Naumann RA (1971) Coup and contre-coup. Observations on the mechanics of visible brain injuries in the rhesus monkey. J Neurosurg 35: 503–517

    Article  CAS  Google Scholar 

  81. Ommaya AK, Corrao P, Letcher FS (1973) Head injury in the chimpanzee. 1. Biodynamics of traumatic unconsciousness. J Neurosurg 39: 152–166

    Article  PubMed  CAS  Google Scholar 

  82. Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness: Correlation of experimental and clinical observations on blunt head injuries. Brain 97: 633–654

    Article  PubMed  CAS  Google Scholar 

  83. Persson L (1976) Experimental brain injury. Thesis. University of Göteborg

    Google Scholar 

  84. Povlishock JT, Becker DP, Miller LW, Dietrich WD (1979) The morphopathologic substrates of concussion? Acta Neuropathol (Berl) 47: 1–11

    Article  CAS  Google Scholar 

  85. Povlishock J, Kontos H (1982) The pathophysiology of pial and intraparenchymal vascular dysfunction. In: Grossman R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 15–29

    Google Scholar 

  86. Proceedings of a Workshop on Head and Neck Injury Criteria. U.S. Department of Transportation. National Highway Traffic Safety Administration, Washington, 1981

    Google Scholar 

  87. Pudenz RH, Shelden HC (1946) The lucite calvarium. A method for direct observation of the brain. II. Cranial trauma brain movement. J Neurosurg 3: 487–505

    Article  PubMed  CAS  Google Scholar 

  88. Reivich M, Marshall J, Kassell N (1969) Loss of autoregulation produced by cerebral trauma. In: Brock M, Fieschi C, Ingvar DH, Lassen NH, Schurmann K (eds) Cerebral blood flow, clinical and experimental results. Springer, Berlin Heidelberg New York, pp 205–208

    Google Scholar 

  89. Rinder L, Olsson Y (1968) Vascular permeability changes in experimental brain concussion. Acta Path Microbiol 72: 350–352

    Article  CAS  Google Scholar 

  90. Rinder L ( 1969 a) Experimental brain concussion by sudden intracranial input of fluid. Göteborg, Sweden: Dept. of Hygiene, Univ. of Göteborg. Dissertation

    Google Scholar 

  91. Rinder L (1969b) Concussive response and intracranial pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 76: 352–360

    Article  PubMed  CAS  Google Scholar 

  92. Rinder L, Olsson Y, Lindgren S, Stâlhammar C (1972) Comparison of effects from single and repeated trauma to the animal brain. Scand J Rehab Med 4: 97–99

    CAS  Google Scholar 

  93. Ripperger EA (1975) The mechanics of brain injuries. In: Vinken PJ, Bruyn GW (eds) Injuries of the brain and skull. Handbook of clinical neurology. Am Elsevier Publ Co, New York, pp 91–109

    Google Scholar 

  94. Rosenthal M, Duckrow B, LaManna J, et al. (1982) Conse quences of cerebral injury on oxidative energy metabolism measured in situ. In: Grossmann R, Gildenberg P (eds) Seminars in neurological surgery. Head injury: Basic and clinical aspects. New York, pp 69–78

    Google Scholar 

  95. Rosner M, Becker D (1984) Experimental brain injury: successful therapy with the weak base, tromethamine. With an overview of CNS acidosis. J Neurosurg 60: 961–971

    Article  PubMed  CAS  Google Scholar 

  96. Sato K, Massing W, Zulch KJ (1971) Experimental concussion in the cat. Clinical and morphological findings. Z Neurol 200: 201–212

    Article  PubMed  CAS  Google Scholar 

  97. Smith D, Ducker T, Kempe L (1969) Experimental in vivo microcirculatory dynamics in brain trauma. J. Neurosurg 30: 664–672

    Article  PubMed  CAS  Google Scholar 

  98. Stâlhammar D (1974) Experimental brain damage from fluid pressure due to impact acceleration. Göteborg, Sweden: Dept of Neurosurg Univ of Göteborg Dissertation

    Google Scholar 

  99. Sullivan HG, et al. (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45: 520–534

    Article  Google Scholar 

  100. Unterharnscheidt F, Higgins LS (1969 b) Traumatic lesions of brain and spinal cord due to non-deforming angular acceleration of the head. Texas Reports on Biol and Med 27: 127–166

    CAS  Google Scholar 

  101. Weinstein J, Langfitt T, Bruno L, et al. (1968) Experimental study of patterns of brain distortion and ischemia produced by an intracranial mass. J Neurosurg 28: 513–521

    Article  PubMed  CAS  Google Scholar 

  102. Ward C (1981) Status of head injury modeling. Proceedings of a Workshop on Head and Neck Injury Criteria. U.S. Department of Transportation. National Highway Traffic Safety Administration, pp 157–162

    Google Scholar 

  103. Voigt G, Löwenhielm P, Ljung C (1977) Rotational cerebral injuries near the superior margin of the brain. Acta Neuropathol (Berl) 39: 201–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this chapter

Cite this chapter

Stålhammar, D. (1986). Experimental Models of Head Injury. In: Lindgren, S. (eds) Modern Concepts in Neurotraumatology. Acta Neurochirurgica, vol 36. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8859-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8859-0_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81931-9

  • Online ISBN: 978-3-7091-8859-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics