Skip to main content

Experimental Determination of the Depth Distribution of X-Ray Production Ф(ρz) for X-Ray Energies Below 1 keV

  • Conference paper
Progress in Materials Analysis

Part of the book series: Mikrochimica Acta Supplementum ((MIKROCHIMICA,volume 11))

Abstract

The correction procedure for the quantitative electron probe microanalysis assumes knowledge of the X-ray production as a function of depth in the excited material. The absorption correction requires the relative intensity generated in the depth ρz to calculate the differences in absorption of the generated X-radiation between the specimen to be analyzed and the standard (ρ = density). The so-called atomic number correction deals with different backscattering and X-ray generation in the specimen and the standard, and involves knowledge of the total X-ray intensity generated in the target. The absolute depth distribution of X-ray production Ф (ρz) can provide the required information for both the absorption and atomic number corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Packwood and J. D. Brown, X-Ray Spectrom. 10, 138 (1981).

    Article  CAS  Google Scholar 

  2. J. D. Brown and L. Parobek, Proc. 6th Int. Conf. on X-Ray Optics and Microanalysis, Tokyo, University of Tokyo Press, 1982, p. 163.

    Google Scholar 

  3. J. D. Brown and L. Parobek, Adv. X-Ray Anal. 16, 198 (1973).

    CAS  Google Scholar 

  4. L. Parobek and J. D. Brown, X-Ray Spectrom. 7, 26 (1978).

    Article  CAS  Google Scholar 

  5. J. D. Brown and R. H. Packwood, X-Ray Spectrom. 11, 187 (1982).

    Article  CAS  Google Scholar 

  6. R. Castaing and J. Descamps, J. Phys. Radium 16, 304 (1955).

    Article  CAS  Google Scholar 

  7. W. Reuter, s. ref. 2, p. 121.

    Google Scholar 

  8. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, Atomic Data and Nuclear Data Tables 27, 1 (1982).

    Article  CAS  Google Scholar 

  9. S. N. Deming and S. L. Morgan, Anal. Chem. 45, 278A (1973).

    CAS  Google Scholar 

  10. G. Love and V.D.Scott, J. Phys. D. 11, 1369 (1978).

    Google Scholar 

  11. C. J. Powell, Rev. Mod. Phys. 48, 33 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Karduck, P., Rehbach, W. (1985). Experimental Determination of the Depth Distribution of X-Ray Production Ф(ρz) for X-Ray Energies Below 1 keV. In: Grasserbauer, M., Wegscheider, W. (eds) Progress in Materials Analysis. Mikrochimica Acta Supplementum, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8840-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8840-8_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81905-0

  • Online ISBN: 978-3-7091-8840-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics