Skip to main content

Quantitative Distribution Analysis of Phosphorus in Silicon with Secondary Ion Mass Spectrometry

  • Conference paper

Part of the book series: Mikrochimica Acta Supplementum ((MIKROCHIMICA,volume 11))

Abstract

In VLSI-technology (Very Large Scale Integration) tolerances of process parameters are decreasing. Process modelling (in this paper the simulation of dopant profiles) has become an essential development tool. Thermal diffusion is occurring in every temperature step (typical temperature 800–1100 °C). Therefore basic understanding of the physical process influencing the diffusion is very important (e.g. mutual diffusion of different dopant elements, oxidation, nitriding). Since the early 60’s it was already known that at high concentrations (> ~ 1020 cm−3) classical theories (complementary error function, Gaussian distribution) do not correctly describe dopant profiles in silicon. Because of the lack of suitable models they were used up to the early 70’s. After this period more complex models which tried to take into account basic physical concepts were developed. The calculations are mathematically complicated requiring simultaneous partial differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Hu, Proceedings of the 3rd Int. Symp. on VLSI Science and Technology (W. M. Bullis, ed. ), Electrochemical Society, May 1985.

    Google Scholar 

  2. T. Y. Tan and U. Gösele, Appl. Phys. Lett. 40/7, 616 (1982).

    Google Scholar 

  3. G. Stingeder, M. Grasserbauer, E. Guerrero, H. Pötzl, and R. Tielert, Fresenius’ Z. Anal. Chem. 314, 304 (1983).

    Article  CAS  Google Scholar 

  4. M. Grasserbauer and G. Stingeder, Trends in Analytical Chemistry 3/5, 133 (1984).

    Google Scholar 

  5. M. Grasserbauer, S. Stingeder, H. Pötzl, and E. Guerrero, to be published in Fresenius’ Z. Anal. Chem. (1985).

    Google Scholar 

  6. S. M. Hu, P. Fahey, and R. W. Dutton, J. Appl. Phys. 54/12, 6912 (1983).

    Google Scholar 

  7. F. Burkhardt, A. Mertens, and C. Wagner, phys. stat. sol. (a) 22, K45 (1974).

    Google Scholar 

  8. A. Benninghoven, J. Giber, J. Laszlo, M. Riedel, and H. W. Werner (eds.), Secondary Ion Mass Spectrometry SIMS III, Springer Ser. Chem. Phys. 19. Berlin-Heidelberg- New York: Springer 1982.

    Google Scholar 

  9. A. Benninghoven, J. Okano, R. Shimizu, and H. W. Werner (eds.), Secondary Ion Mass Spectrometry SIMS IV, Springer Ser. Chem. Phys. 36. Berlin-Heidelberg- New York-Tokyo: Springer 1984.

    Google Scholar 

  10. R. A. Burdo and G. H. Morrison, Table of Atomic and Molecular Lines for Spark Source Mass Spectrometry of Complex Sample-Graphite Mixes. Department of Chemistry, Cornell University, Ithaca, N.Y., U.SA.

    Google Scholar 

  11. K.Wittmaack, Phys. Lett. 29/9,552(1976).

    Google Scholar 

  12. U. Traxlmayr and K. Riedling, Int. J. Mass Spectrom. Ion Proc. 61, 261 (1984).

    Article  CAS  Google Scholar 

  13. H. W. Werner, Fresenius’ Z. Anal. Chem. 314, 274 (1983).

    Article  CAS  Google Scholar 

  14. D. Shaw (ed.), Atomic Diffusion in Semiconductors. London: Plenum Press 1973.

    Google Scholar 

  15. J. Narayan and T. Y. Tan (eds.), Defect in Semiconductors, North-Holland 1981.

    Google Scholar 

  16. S. Mahajan and J. W. Corbett (eds.), Defects in Semiconductors, North-Holland 1983.

    Google Scholar 

  17. L. E. Miller and H. Gatos (ed.), Properties of Elemental and Compound Semiconductors. New York: Interscience 1960, p. 303.

    Google Scholar 

  18. D. B. Lee, Philips Res. Rept. Suppl. 5 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Karl Winsauer, Johannes Kepler Universität Linz, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Stingeder, G., Grasserbauer, M., Traxlmayr, U., Guerrero, E., Pötzl, H. (1985). Quantitative Distribution Analysis of Phosphorus in Silicon with Secondary Ion Mass Spectrometry. In: Grasserbauer, M., Wegscheider, W. (eds) Progress in Materials Analysis. Mikrochimica Acta Supplementum, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8840-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8840-8_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81905-0

  • Online ISBN: 978-3-7091-8840-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics