Skip to main content

Determination of Ion-Atom Potentials from Mobility Experiments

  • Chapter
Book cover Swarms of Ions and Electrons in Gases

Abstract

Drift tube exoeriments have been used to investigate the behavior of low density ion swarms, with applied electric fields, since the 1930’s. Starting with the work of Tyndall and of Bradbury and Nielsen it was recognized that the evolution of the swarm consisted of a steady drift of the swarm center and diffusion out from this center. Thus the experimental data may be analyzed in terms of a drift velocity, \(\vec{v}\), and a diffusion coefficient, D, such that the ion density at position \(\vec{r}\) at time t is \( n(\vec{r},t) = C{\left[ {4\pi Dt} \right]^{{ - 3/2}}}\exp {[\vec{r} - \vec{v}t)^{2}}/4Dt] \)(1) assuming a concentration of C ions at the origin at time zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. Wannier, Bell System Technical Journal 32 170 (1953).

    Google Scholar 

  2. E. W. McDaniel and E. A. Mason, “The Mobility and Diffusion of Ions in Gases”, Wiley, 1973.

    Google Scholar 

  3. H. R. Skullerud, J. Phys. B. 6, 728 (1973).

    Article  ADS  Google Scholar 

  4. H. R. Skullerud, J. Phys. B. 6, 918 (1973).

    Article  ADS  Google Scholar 

  5. S. L. Lin and J. N. Bardsley, J. Chem. Phys. 66, 436 (1977).

    ADS  Google Scholar 

  6. H. R. Skullerud, Brit. J. Appl. Phys. 1, 1567 (1968).

    Google Scholar 

  7. L. A. Viehland and E. A. Mason, Ann. Phys. (NY) 91, 499 (1975).

    Article  ADS  Google Scholar 

  8. L. A. Viehland and E. A. Mason, Ann. Phys. (NY) 110, 287 (1978).

    Article  ADS  Google Scholar 

  9. L. A. Viehland, M. M. Harrington, and E. A. Mason, Chem. Phys. 17, 433 (1976).

    Article  ADS  Google Scholar 

  10. E. B. Smith, Physica (Utr) 73, 211 (1974).

    Article  ADS  Google Scholar 

  11. S. L. Lin, I. R. Gatland, and E. A. Mason, J. Phys. B: Atom. Molec. Phys. U, 41 79 (1979).

    Google Scholar 

  12. F. Howorka, F. C. Fehsenfeld, and D. L. Albritton, J. Phys. B: Atom. Molec. Phys. 12, 4189 (1979).

    Article  ADS  Google Scholar 

  13. L. A. Viehland and E. A. Mason, private communication.

    Google Scholar 

  14. H. R. Skullerud, Proc. 3rd Int. Swarm Seminar, Innsbruck, Austria, 1983.

    Google Scholar 

  15. I. R. Gatland, J. Chem. Phys. 75, 4162 (1981).

    Article  ADS  Google Scholar 

  16. “Handbook of Mathematical Functions”, M. Abromowitz and I. A. Stequn, Dover, 1965.

    Google Scholar 

  17. S. L. Lin, L. A. Viehland, and E. A. Mason, Chem. Phys. 37, 411 (1976).

    Article  Google Scholar 

  18. L. A. Viehland and S. L. Lin, Chem. Phys. 43 135 (1979).

    Article  Google Scholar 

  19. M. Waldman and R. G. Gordon, J. Chem. Phys. 71, 1325 (1979) and private communication.

    Article  ADS  Google Scholar 

  20. I. R. Gatland, L. A. Viehland, and E. A. Mason, J. Chem. Phys. 66, 537 (1977).

    Article  ADS  Google Scholar 

  21. P. C. Hariharan and V. Staemmler, Chem. Phys. 15 409 (1976).

    Article  Google Scholar 

  22. I. R. Gatland, W. F. Morrison, H. W. Ellis, M. G. Thackston, E. W. McDaniel, M. H. Alexander, L. A. Viehland, and E. A. Mason, J. Chem. Phys. 66, 5121 (1977).

    Article  ADS  Google Scholar 

  23. H. Inouye and S. Kita, J. Chem. Phys. 57 1301 (1972).

    Article  ADS  Google Scholar 

  24. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data and Nuclear Data Tables 17, 177 (1976) and 179 (1978).

    Article  ADS  Google Scholar 

  25. R. E. Olson and B. Liu, Chem. Phys. Lett. 62, 242 (1979).

    Article  ADS  Google Scholar 

  26. I. R. Gatland, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, J. Chem. Phys. 68, 2775 (1978).

    Article  ADS  Google Scholar 

  27. I. R. Gatland, D. R. Lamm, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, J. Chem. Phys. 68 4951 (1978).

    Article  ADS  Google Scholar 

  28. D. R. Lamm, M. G. Thackston, F. L. Eisele, H. W. Ellis, J. R. Twist, W. M. Pope, I. R. Gatland and E. W. McDaniel, J. Chem. Phys. 74, 3042 (1981).

    Article  ADS  Google Scholar 

  29. M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, E. W. McDaniel, and I. R. Gatland, J. Chem. Phys. 73, 3183 (1980).

    Article  ADS  Google Scholar 

  30. D. R. Lamm, R. D. Chelf, J. R. Twist, F. B. Holleman, M. G. Thackston, F. L. Eisele, W. M. Pope, I. R. Gatland, and E. W. McDaniel, J. Chem. Phys. 79, 1965 (1983).

    Article  ADS  Google Scholar 

  31. L. A. Viehland and E. A. Mason, Chem. Phys. Lett. 28, 298 (1981).

    Article  ADS  Google Scholar 

  32. C. de Vreugd, R. W. Wijnaendts van Resandt, and J. Los, Chem. Phys. Lett. 65, 93 (1979).

    Article  ADS  Google Scholar 

  33. L. A. Viehland, E. A. Mason, and S. L. Lin, Phys. Rev. A 24 3004 (1981).

    Article  ADS  Google Scholar 

  34. R. E. Olson and B. Liu, Phys. Rev. A 17, 1568 (1978).

    Article  ADS  Google Scholar 

  35. R. E. Olson and B. Liu, Phys. Rev. A 20 1344 (1979).

    Article  ADS  Google Scholar 

  36. R. E. Olson and B. Liu, Phys. Rev. A 22 1389 (1980).

    Article  ADS  Google Scholar 

  37. T. L. Bailey, C. J. May, and E. E. Muschlitz, J. Chem. Phys. 26 1446 (1957).

    Article  ADS  Google Scholar 

  38. S. Kita, K. Nöda, and H. Inouye, J. Chem. Phys. 64, 3446 (1976).

    Article  ADS  Google Scholar 

  39. L. A. Viehland, Chem. Phys. 78, 279 (1983).

    Article  ADS  Google Scholar 

  40. P. Polak-Dingels, M. S. Rajan, and E. A. Gislason, J. Chem. Phys. 77 3982 (1982).

    Article  ADS  Google Scholar 

  41. F. E. Budenholzer, E. A. Gislason, and A. D. Jorgensen, J. Chem. Phys. 78, 5279 (1983).

    Article  ADS  Google Scholar 

  42. M. S. Rajan and E. A. Gislason, J. Chem. Phys. 78, 2426 (1983).

    Article  ADS  Google Scholar 

  43. L. A. Viehland, to be submitted to Chem. Phys.

    Google Scholar 

  44. T. Koizumi, N. Kobayashi, and Y. Kaneko, J. Phys. Soc. Japan 48 1678 (1980).

    Article  ADS  Google Scholar 

  45. R. A. Cassidy and M. T. Elford, Proc. 3rd Int. Swarm Seminar, Innsbruck, Austria, 1983.

    Google Scholar 

  46. E. A. Gislason, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gatland, I.R. (1984). Determination of Ion-Atom Potentials from Mobility Experiments. In: Lindinger, W., Märk, T.D., Howorka, F. (eds) Swarms of Ions and Electrons in Gases. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8773-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8773-9_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8775-3

  • Online ISBN: 978-3-7091-8773-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics