Advertisement

Handhabung von flüssigem Wasserstoff

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Die sichere Handhabung von Wasserstoff ist heute im industriellen sowie kommerziellen Bereich allgemeiner Stand der Technik [1–6]. Ferner wird im Rahmen der U.S.-Raumfahrtprogramme flüssiger Wasserstoff in großen Mengen produziert, transportiert, gespeichert und verwendet [7–10]. Aufgrund der dabei gesammelten positiven Erfahrungen kann flüssiger Wasserstoff hinsichtlich Scines Verhaltens bezüglich Handhabung und bei Störfällen mit den alternativen flüssigen Sekundärenergieträgern Methan (LNG) und anderen niedrig siedenden Kohlenwasserstoffen wie beispielsweise Benzin verglichen werden [11]. Nach den heutigen Erfahrungen haben alle drei der hier aufgeführten Energieträger spezifische sicherheitstechnische Eigenschaften, die in dieser Hinsicht keine spezielle Bevorzugung eines von ihnen erkennen lassen (Abb. 86). Energieträger haben für verschiedene Anwendungsbereiche verschiedene Risken und erfordern detaillierte Sicherheitsuntersuchungen für den Einzelfall. Dabei ist zu berücksichtigen, daß neue Anwendungsbereiche auch neue sicherheitstechnische Probleme schaffen können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Schödel, J. P.: Hydrogen — a Safety Risk. In: Hydrogen as an Energy Vector. EC-EUR 6085, Brüssels, October 1978.Google Scholar
  2. 2.
    Bartknecht, W.: Explosionen. Berlin-Heidelberg-New York: Springer 1978.Google Scholar
  3. 3.
    Lewis, B., Elbe, G. von: Combustion, Flames and Explosion of Gases, 2nd ed. New York: Academic Press 1961.Google Scholar
  4. 4.
    Anon.: Standard for Gaseous Hydrogen at Consumer Sites. Compr. Gas Ass. (CGA)- Pamphlet G-5.1,1965.Google Scholar
  5. 5.
    Zalosh, R. G., Short, T. P.: Compüation and Analysis of Hydrogen Accidents. Rep. Dep. of Energy (DOE), Contract No. EE-77-C-024442, 1977.Google Scholar
  6. 6.
    Zalosh, R. G., Short, T. P.: Comparative Analysis of Hydrogen Fire and Explosion Incidents. Rep. Factory Mutual Res. Corp., March 1978.Google Scholar
  7. 7.
    Caras, G. J.: Prevention, Detection and Suppression of Hydrogen Explosions in Aero- space Vehicles. NASA-CR-78268,1966.Google Scholar
  8. 8.
    Baker, W. E., Kulesz, J. J.: Workbook for Predicting Pressure Wave and Fragment Effects of Exploding Propellant Tanks and Gas Storage Vessels. NASA-CR-134906, 1975.Google Scholar
  9. 9.
    Anon.: Hydrogen Safety Manual. NASA-N 75–72909,1968.Google Scholar
  10. 10.
    Ordin, P. M.: Review of Hydrogen Accidents and Incidents in NASA Operations. NASA- TM-X-71565,1974.Google Scholar
  11. 11.
    Hord, J.: Is Hydrogen Safe? NBS-Technical Note 690, 34 S., 1976. Ferner enthalten in NBS-Monograph 168, Selected Properties of Hydrogen, 292 S., 1981.Google Scholar
  12. 12.
    Anon.: Wasserstoffversprödung. Ergebnisse des Forschungs- u. Entwicklungsprogramms „Korrosion und Korrosionsschutz”. DECHEMA-Bd.l (1974–1977).Google Scholar
  13. 13.
    Mills, R. L., Edeskuty, F. J.: Hydrogen Embritüement of Cold-Worked Metals. Chem. Eng. Progr. 52,477–480 (1956).Google Scholar
  14. 14.
    Smith, M. E.: Hydrogen Embrittlement of Metals — a Bibliography with Abstracts. Rep. FCR-1964, NTIS/PS-75/049, January 1975.Google Scholar
  15. 15.
    Mills, R. L., Edeskuty, F. J.: Tests for Hydrogen Embrittlement of Steels Used in the Tank Farm Cylinder. Los Alamos Sci. Lab., N.M., LA-3602, 1966.Google Scholar
  16. 16.
    Keller, C. W.: Fiberglass Supports for Cryogenic Tanks. NASA-Lewis Res. C., NASA-CR- 120937, Lockheed Missües and Space Co., Sunnyvale, Calif., Rep. No. LMSC-D281476, October 1972.Google Scholar
  17. 17.
    Hall, C. A., Spond, D. E.: Low Thermal Flux Glassfiber/Metal Vessels for LH2 Storage Systems. In: Hydrogen Energy, Part A. Veziroglu, T. N. (ed.). New York: Plenum Press.Google Scholar
  18. 18.
    Hartwig, G.: Low-Temperature Properties of Epoxy Resins and Composites. Adv. Cryog. Eng., Vol. 24, pp. 63–75. New York: Plenum Press 1978.Google Scholar
  19. 19.
    Schramm, R. E., Käsen, M. B.: Static Tensile Properties of Boron-Aluminium and Boron- Epoxy Composites at Cryogenic Temperatures. Adv. Cryog. Eng., Vol. 22, 205–213. New York: Plenum Press 1978.Google Scholar
  20. 20.
    Augsburger, E. I., Dietsche, W., Kinder, H., Becker, J.: Thermal Conduetivity of Several Fibre-Reinforced Composites between 2 K and 300 K. Cryogenics 20, 666 (1980).CrossRefGoogle Scholar
  21. 21.
    Khim, Z. G.: Testing of Fiberglass-Reinforced Polyester Composites. Adv. Cryog. Eng., Vol. 26, pp. 280–285. New York: Plenum Press 1980.Google Scholar
  22. 22.
    Käsen, M. B., Schramm, R. E.: Current Status of Standardized Nonmetallic Cryogenic Laminates. Adv. Cryog. Eng., Vol. 28, pp. 271–278. New York: Plenum Press 1982.Google Scholar
  23. 23.
    Radcliffe, D. J., Rosenberg, H. M.: The Thermal Conduetivity of Glass-Fibre and Carbon- Fibre/Epoxy Composites from 2 to 80 K. Cryogenics 22, 245–249 (1982).CrossRefGoogle Scholar
  24. 24.
    Gauchel, J. V., Olinger, J. L., Lupton, D. C.: Characterization of Glass-Reinforced Composites for Cryogenic Applications. Adv. Cryog. Eng., Vol. 28, pp. 211–222. New York: Plenum Press 1982.Google Scholar
  25. 25.
    Wang, S. S., Chim, E. S. M.: Degradation of Fiber-Reinforced Composite Materials at Cryogenic Temperatures. Adv. Cryog. Eng., Vol. 28, pp. 191–210. New York: Plenum Press 1982.Google Scholar
  26. 26.
    Hartwig, G.: Reinforced Polymers at Low Temperatures. Adv. Cryog. Eng., Vol. 28, pp. 179–190. New York: Plenum Press 1982.Google Scholar
  27. 27.
    Khalil, A., Han, K. S.: Mechanical and Thermal Properties of Glass-Fiber Reinforced Composites at Cryogenic Temperatures. Adv. Cryog. Eng., Vol. 28, pp. 243–252. New York: Plenum Press 1982.Google Scholar
  28. 28.
    Voth, R. O.: Safety at Hydrogen Pressure Gauges. Adv. Cryog. Eng., Vol. 17, pp. 182–188. New York: Plenum Press 1972.Google Scholar
  29. 29.
    Edeskuty, F. J., Reider, R., Williamson, K. D., Jr.: Safety. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.). London-New York: Academic Press 1971.Google Scholar
  30. 30.
    Chelton, D. B.: Safety in the Use of Liquid Hydrogen. In: Technology and Uses of Liquid Hydrogen, Scott, R. B. (ed.). New York: Pergamon Press 1964.Google Scholar
  31. 31.
    Hord, J.: Explosion Criteria for Liquid Hydrogen Test Facilities. NBS-Rep. 10734, 1972.Google Scholar
  32. 32.
    Aydelott, J. C., Spruckler, C. M.: Venting of Liquid Hydrogen Tankage. NASA-TN-D- 5263,1969.Google Scholar
  33. 33.
    Neary, R. M.: Handling Cryogenic Fluids. Nat. Fire Prot. Ass., Quart. 54, 63–70 (1970).Google Scholar
  34. 34.
    Edeskuty, F. J., Williamson, K. D., Jr.: Storage and Handling of Cryogens. Adv. Cryog. Eng., Vol. 17, pp. 56–68. New York: Plenum Press 1972.Google Scholar
  35. 35.
    Edeskuty, F. J., Reider, R.: Liquefied Hydrogen Safety. Los Alamos Sci. Lab., Rep. LA-DC-9569,1968.Google Scholar
  36. 36.
    Connolly, W. W.: Practical Safety Standard for Commercial Handling of Liquefied Hydrogen. Adv. Cryog. Eng., Vol. 12, pp. 192–197. New York: Plenum Press 1967.Google Scholar
  37. 37.
    Allan, D. S.: Safety Aspects of Liquid Hydrogen. SAE-Paper 994B, 1965.CrossRefGoogle Scholar
  38. 38.
    Cassutt, L. H., Maddoeks, F. E., Sawyer, W. A.: Study of Hazards in Storage and Hand- ling of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 5, pp. 55–61. New York: Plenum Press 1960.Google Scholar
  39. 39.
    Asse, J.: Iiquefied Hydrogen Safety. Review. J. Amer. See. Saf. Eng. 14, 18–23 (1969).Google Scholar
  40. 40.
    Anon.: On an Investigation of Hazards Associated with the Storage and Handling of Liquid Hydrogen. Final Rep. C-61002, Contract No. AFI8(600)-1687, Arthur D. Little Inc., DDC Access. No. AD 324194, March 1960.Google Scholar
  41. 41.
    Zabetakis, M. G., Burgess, D. S.: Research on the Hazards Associated with the Production and Handling of Liquid Hydrogen. WADC Tech. Rep. 60–141, December 1961, see also: U.S. Dept. of Interior, Bureau of Mines Rep. RI 5707, 1961.Google Scholar
  42. 42.
    Zabetakis, M. G., Furno, A. L., Martindill, G. J.: Explosion Hazards of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 6, pp. 185–194. New York: Plenum Press 1961.Google Scholar
  43. 43.
    Zabetakis, M. G., Furno, A. L., Perlee, H. L.: Hazards in Using Liquid Hydrogen in Bubble Chambers. Bureau of Mines Rep. No. 6309, 1963.Google Scholar
  44. 44.
    Zabetakis, M. G.: Flammability Characteristics of Combustible Gases and Vapors. Bureau of Mines BuL 627,1965.Google Scholar
  45. 45.
    Bollinger, L. E., Fong, M. C., Laughrey, J. A., Edse, R.: Experimental and Theoretieal Studies on the Formation of Detonation Waves in Variable Geometrie Tubes. NASA-TN- D-1983, 1963.Google Scholar
  46. 46.
    Witkofski, R. D., Chirivella, J. E.: Experimental and Analytical Analyses of the Mechanisms Governing the Dispersion of Flammable Flouds Formed by Liquid Hydrogen Spills. Proc. 4th World Hydrogen Energy Conf., Vol. 4, 1659–1674. Adv. in Hydrogen Energy 3. New York: Pergamon Press 1982; auch: Int. J. Hydrogen Energy 9, 425–436 (1984).Google Scholar
  47. 47.
    Burgess, D. S., Zabetakis, M. G.: Fire and Explosion Hazards Associated with Liquefied Natural Gas. N 63–18682, available from NASA Sci. and Tech. Inf. Facility, 1972.Google Scholar
  48. 48.
    Drake, E. M.: Vapor Dispersion from Spills on LNG on Land. Adv. Cryog. Eng., Vol. 20, pp. 134–142. New York: Plenum Press 1974.Google Scholar
  49. 49.
    Hord, J. (ed.): Selected Topics on Hydrogen Fuel. NBS-Spec. Publ. SP 419, 1975.Google Scholar
  50. 50.
    Bowen, T. L.: Investigation of Hazards Associated with Using Hydrogen as a Military Fuel. Naval Ship Res. and Dev. Center, rep. 4541, Bethesda, MD 20084, 1975.Google Scholar
  51. 51.
    Anon.: An Approach to Liquefied Natural Gas (LNG). Safety and Environmental Control Research, U.S. Dept. of Energy (DOE), DOE/EV-0002, 1978.Google Scholar
  52. 52.
    Hord, J.: Hydrogen Safety: An Annotated Bibligraphy of Regulations, Standards and Guidelines. Int. J. Hydrogen Energy 5, 579–584 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations