Advertisement

Ausblick auf zukünftige Anwendungen

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Zukünftige Anwendungen von flüssigem Wasserstoff als Sekundärenergieträger hängen in starkem Maße von der Rolle ab, die Wasserstoff allgemein in zukünftigen Energiesystemen übernehmen kann. Es liegt nicht im Rahmen dieses Buches, auf die zahlreichen Veröffentlichungen und Studien über die Beteiligung von Wasserstoff an zukünftigen Energiesystemen und auf die dort gebrachten Argumente näher einzugehen, sondern vielmehr einen Überbück über den gegenwärtigen Stand der Technik des flüssigen Wasserstoffs und die daraus ableitbaren Entwicklungsmöglichkeiten zu geben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Flohn, H.: Klimaänderung als Folge der CO2-Zunahme? Phys. Bl. 37, 184–190 (1981).Google Scholar
  2. 2.
    Bach, W. (ed.): The Carbon Dioxide Problem. Experentia 36, 767–812, 1017–1025 (1980b).Google Scholar
  3. 3.
    Williams, J. (ed.): Carbon Dioxide. Climate and Society. New York: Pergamon Press 1978.Google Scholar
  4. 4.
    Woodwell, G. M., Pecan, E. V.: Carbon and the Biosphere. Brookhaven Symp. in Biology No. 24, U.S. Atomic Energy Comm. (ed.). Div. of Technical Inf., Oak Ridge, Tenn., 1973.Google Scholar
  5. 5.
    Olson, J. S., Pfuderer, H. A., Chan, Y. H.: Changes in the Global Carbon Cycle and the Biosphere. ORNL-IEIS-109. Oak Ridge, Tenn., 1978.Google Scholar
  6. 6.
    Laurmann, J. A.: Impacts of CO2-Induced Climate Change, Strategie Issues and their Treatment. Proc. 4th World Hydrogen Energy Conf., Vol. 4, 1785–1787. Adv. in Hydrogen Energy. New York: Pergamon Press 1982.Google Scholar
  7. 7.
    Zweig, R. M.: Hydrogen — Prime Candidate for Solving Air Pollution Problems. Proc. 4th World Hydrogen Energy Conf., Vol. 4, 1789–1805. Adv. in Hydrogen Energy 3. New York: Pergamon Press 1982.Google Scholar
  8. 8.
    Häfele, W., Barnert, H., Sassin, W.: Künftige fossüe Brennstoffe — Ihre Nutzung und Einbettung in moderne Energiesysteme. DFVLR-Nachrichten 35, 8–19 (1982).Google Scholar
  9. 9.
    Loeken, H.: Hydrogen as Motor Fuel for Locomotives, Cars and Ships. Teknisk Ukeblad 82, 555–558, 563–565 (1935).Google Scholar
  10. 10.
    Foster, R. W., Escher, E. J. D.: Hydrogen Fueled Railroad Motive Power Systems, A Feasibility Study. Escher-Foster Techn. Ass., St. Johns, Mich., 1976.Google Scholar
  11. 11.
    Alpaugh, R. T., Escher, W. J. D., Foster, R. W., Novil, M.: Hydrogen-Fueled Railroad Motive Power Systems, A North American View. Proc. 2nd World Hydrogen Energy Conf., Vol. 4, 1793–1827. Adv. in Hydrogen Energy 1. New York: Pergamon Press 1978.Google Scholar
  12. 12.
    Steinberg, B. A, Scott, D. S.: A Systems Analysis Comparing Conventional and Hydrogen Powered Raü Locomotives. Proc. 17th IECEC, Paper 829372,1178–1183, Los Angeles, 1982.Google Scholar
  13. 13.
    Van Vorst, W. D., Wolley, R. L.: Hydrogen Fueled Surface Transportation, Vol. IV: Hydrogen: Its Technology and Implications, Cox, K. E., Williamson, K. D. (eds.). Boca Raton, Florida: CRC-Press Inc. 1979.Google Scholar
  14. 14.
    Ishigohka, T.: A Conceptual Design of a Hydrogen Fueled Magnetically Levitated Super- conducting High-Speed Train. Proc. 4th World Hydrogen Energy Conf., Vol. 3, 1095–1104. Adv. in Hydrogen Energy 3, 4 Vol. New York: Pergamon Press 1982.Google Scholar
  15. 15.
    Carhart, H. W., Affens, W. A., Boss, B. D., et al.: Hydrogen as a Navy Fuel, Special Study Study. Naval Res. Lab., Washington, D. C., NRL-7754, NTIS, 1974.Google Scholar
  16. 16.
    Sindt, C. F.: Transmission of Hydrogen. In: Selected Topics of Hydrogen Fuel, Hard, J. (ed.) NBS-Spec. Publ. 419, 1975.Google Scholar
  17. 17.
    Quandt, E.: Investigation of Hydrogen Fueled Naval Vehicles. Hydrogen Energy, Part B, Veziroglu, T. M. (ed.). New York: Plenum Press 1974.Google Scholar
  18. 18.
    Ford, A. E.: Hydrogen Fueled Turbine Boat Demonstration. SAE-paper 770797, September 1977.CrossRefGoogle Scholar
  19. 19.
    Cart, E. N., Jr., et al.: Alternate Energy Sources for Nonhighway Transportation. U.S. Dept. of Energy (DOE), Transportation Energy Conservation Div., Washington, D.C., 1977.Google Scholar
  20. 20.
    Silla, H.: Possible Future Maritime Fuels. Webb Inst, of Naval Architecture, Glen Glove, N.A., 1977.Google Scholar
  21. 21.
    Anon.: Alternate Fuels for Maritime Use. National Academy of Sei., Maritime Res. Board, Washington, D.C., 1980.Google Scholar
  22. 22.
    Archibald, J. P.: Hydrogen Fueled Ships. Proc. Int. Conf. on Alternate Energy Sources, Miami Beach, 1980; vgl. Alternative Energy Sources III, Vol. 5, Veziroglu, T. N. (ed.). Berlin-Heidelberg-New York: Springer 1983.Google Scholar
  23. 23.
    Fooks, R. C.: Some Important Factors in LNG-Tanker Design Selection. Adv. Cryog. Eng., Vol. 19, pp. 269–275. New York: Plenum Press 1973.Google Scholar
  24. 24.
    Pastuhov, A.: Status Report on LNG Tanker Design. Adv. Cryog. Eng., Vol. 19, pp. 282–291. New York: Plenum Press 1973.Google Scholar
  25. 25.
    Howard, J. L.: Near-Teim Trends in LNG-Tankships Design. Adv. Cryog. Eng., Vol. 19, pp. 276–281. New York: Plenum Press 1973.Google Scholar
  26. 26.
    Kollbrunner, C. F., Stauber, H.: Unerschöfliche saubere Wasser- und Energiequellen in Grönland. Inst, für bauwissenschaftliche Forschung, Heft 25. Zürich: Leemann Verlag 1973.Google Scholar
  27. Bundschuh, V.: Nutzung der Gletschereisenergie. In: Energiequellen für morgen? Teil VI: Nutzung der Wasserenergie. Programmstudie im Auftrag des BMFT, Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF/ASA), Nr. ASA-ZE/03/75,1975.Google Scholar
  28. 28.
    World Energy Conference 1980: Proc. World Energy Conference 1980 Munich; 1 Ith WEC; Vol. 1–4; The World Energy Conference 34st St. James Street, London SW1A1HD, 1980.Google Scholar
  29. 29.
    Stewart, A. J., Springer, J. H., Doyle, T. J.: Effectiveness of Superconducting Electric Drives. Naval Eng. J. 91, No. 2 (April 1979).Google Scholar
  30. 30.
    Gamble, B., Keim, T. A.: Superconducting Generator Design for Airborne Application. Adv. Cryog. Eng., Vol. 25, pp. 127–136. New York: Plenum Press 1979.Google Scholar
  31. 31.
    Künkler, H.: Air Precooling Before Compression Effect on the Air Breathing Engine of a Space-Craft Launch Vehicle. 5th Annual DGLR Meeting, DGLR, Köln, NTIS, 1972.Google Scholar
  32. 32.
    Hancox, R.: Fusion Reactors: 1969–80. Nucl. Fusion 20,1064–1068 (1980).CrossRefGoogle Scholar
  33. 33.
    Kidder, R. E.: Laser Driven Isentropic Hollow-Shell Implosion: The Problem of Ignition. Nucl. Fusion 19, 223–234 (1979).CrossRefADSGoogle Scholar
  34. 34.
    Winterberg, F.: The Possibility of Processing a Dense Thermonuclear Winterberg, F.: The Possibility of Processing a Dense Thermonuclear Plasma by an Intense Field Emission Discharge. Phys. Rev. 174, 212–220 (1968).CrossRefADSGoogle Scholar
  35. 35.
    Yonas, G., Poukey, J. W., Prestwick, K. R., et al.: Electron Beam Focussing and Application to Pulsed Fusion. Nucl. Fusion 14, 731–740 (1974).CrossRefADSGoogle Scholar
  36. 36.
    Goldstein, Sh. A., Lee, R.: Focussed Intense Ion Beams Using Self-Pinched Relativistic Electron Beams. Phys. Lev. Letts. 35, 1079–1082 (1973).CrossRefADSGoogle Scholar
  37. 37.
    Miller, P. A., Butler, R. I., Conan, M., et al.: Propagation of Pinched Electron Beams for Pellet Fusion. Phys. Rev. Letts. 39, 92–98 (1977).CrossRefADSGoogle Scholar
  38. 38.
    Nation, J. A., Sudan, R. N. (eds.): Proc. 2nd Int. Conf. High Power Electron and Ion Beam Research and Technology, Cornell Univ., Ithaka, N.Y., Lab. of Plasma Studies, 1977.Google Scholar
  39. 39.
    Johnson, J. D., Sudan, R. N.: High Power Ion Diodes for Inertial Confmement Fusion Experiments. Sandia Labs., Albuquerque, N.M., Rep. RS-5244/1003, 1978.Google Scholar
  40. 40.
    Moses, G. A., Spencer, R.: Compact Electron Beam or Light-Ion Beam Fusion Reactor Cavity Design Using Non-Spherical Blast Waves. Nucl. Fusion 19, 1386–1389 (1979).CrossRefADSGoogle Scholar
  41. 41.
    Yonas, G.: Developments in Sandia Laboratories Particle Beam Fusion Programme, Plasma Physics and Contr. Nucl. Fusion Res. Proc. 7th Int. Conf., Innsbruck, 1978, Vol. 3, IAEA, Viermal 979.Google Scholar
  42. 42.
    Humphries, J. S., Jr.: Intense Pulses Ions Beams for Fusion Applications. Nucl. Fusion 20, 154 (1980), see also: Physics Today, 21, December 1980.CrossRefGoogle Scholar
  43. 43.
    Anon.: Untersuchungen zur Eignung von Schwerionenstrahlen für den Trägheitseinschluß. Ges. für Schwerionenforschung, GSI-Bericht, Darmstadt, Juni 1980.Google Scholar
  44. 44.
    Post, R. F.: Direct Conversion of Fusion Energy to Electricity, Paper 709004, Proc. 5th Intersoc. Energy Conv. Eng. Conf. (IECEC), Las Vegas, Nev., 1970.Google Scholar
  45. 45.
    Peschka, W.: Hochtemperatur-Energiesysteme unter Verwendung von Plasmareaktoren und induktiven magnetoplasmadynamisehen Wandlern. DLR-FB-67–59, DFVLR-Ber., 1967, vgl. auch: Peschka, W., Some Notes on Future Inductive MPD-Converters with Controlled Nuclear Fusion, Proc. 5th IECEC, 1970.Google Scholar
  46. 46.
    Peschka, W.: Neue Energiesysteme für die Raufahrt. München: Goldmann 1972.Google Scholar
  47. 47.
    Carpetis, C., Peschka, W.: Untersuchung der Wasserstoffspeicherung mit Kryoadsorbern. Abschlußbericht Projekt FA-057–76 EHC. EG-Kommission, Brüssel 1978.Google Scholar
  48. 48.
    Carpetis, C.: A System Consideration of Alternative Hydrogen Storage Faeilities for Estimation of Storage Costs. Int. J. Hydrogen Energy 5,423–439 (1980).CrossRefADSGoogle Scholar
  49. 49.
    Carpetis, C.: Estimation of Storage Costs for Large Hydrogen Storage Facüities. Int. J. Hydrogen Energy 7, 191–205 (1982).CrossRefADSGoogle Scholar
  50. 50.
    Lawaczeck, F.: Storage of Surplus Electrical Energy as Hydrogen. Tek. Tidskr.31–32, 395–401,407–412(1929).Google Scholar
  51. 51.
    Hord, J. (ed.): Selected Topics on Hydrogen Fuel. NBS Spec. Publ. 419, 208 (1975).Google Scholar
  52. 52.
    Booth, L. A., Balcomb, J. D., Edeskuty, F. J.: Combined Nuclear and Hydrogen Economy: A Long-Term Solution to the World’s Energy Problems. Proc. 8th IECEC- Conf., Smith, A. H. (ed.), 396–403, Amer. Inst, of Aeron. and Astron., New York 1973.Google Scholar
  53. 53.
    Jayadevaiah, T. S., Chin, S. C.: Economics of a Hydrogen Storage Peaking Power Plant. ASME Paper No. 74-WA/PW R-6, 1974.Google Scholar
  54. 54.
    Salzano, F. J., Cherniavski, E. A., et al.: Role of Hydrogen in Electric Energy Storage. Hydrogen Energy, Part B, Veziroglu, T. N. (ed.). New York: Plenum Press 1975.Google Scholar
  55. 55.
    Kippenhan, C. J., Corlett, R. C.: Hydrogen-Energy Storage for Electrical Utility Systems, Hydrogen Energy, Part B, Veziroglu, T. N. (ed.). New York: Plenum Press 1975.Google Scholar
  56. 56.
    Ackerman, J. P., Barghusen, J. J., Link, L. E.: Assessment Study of Devices for the Generation of Electricity from Stored Hydrogen. Argonne Nat. Lab. Rep., ANL-75–71, December 1975.Google Scholar
  57. 57.
    Parrish, W. R.: Economic Study of Electrical Peaking Alternatives. Hydrogen Energy, Part V, Veziroglu, T. N. (ed.). New York: Plenum Press 1975.Google Scholar
  58. 58.
    Parrish, W. R.: Hydrogen in the Electrical Utility Industry. In: Selected Topics on Hydrogen Fuel, NBS Spec. Publ. 419,1975.Google Scholar
  59. 59.
    Escher, W. J. D., et al.: A Non-Polluting Noiseless Engine for Powerplant Applications with Specific Orientation to a High Speed Ground Transportation Systems. Rocketdyne, RIP-13, Canoga Park, Calif., 1970.Google Scholar
  60. 60.
    Reese, R. M., Carmichael, A. D.: Cycle for the Propulsion of Deep Submersibles. 6th IECEC, 563–576, SAE, New York, 1971.Google Scholar
  61. 61.
    Wojkowski, H., Schnurnberger, W., Sternfeld, H. J.: Abschätzung erzielbarer Wirkungsgrade und Kosten bei der Verstromung von Wasserstoff. EG-Abschlußbericht zu FA 404–78-7, EHD, Brüssel, 1981.Google Scholar
  62. 62.
    Wright, D. E., Lucci, A. D., Campbell, J., Lee, J. C.: Hydrogen Turbine Power Conversion System Assessment. NASA-CR-135298, RI/RD 77–252, April 1978.Google Scholar
  63. 63.
    Colladay, R. S.: Thermal FeasibÜity of Using Methane or Hydrogen Fuel for Direct Cooling of a First Stage Turbine Stator. NASA-TN-D-6042, NTIS, 1970.Google Scholar
  64. 64.
    Stärk, G., Beßlein, W., et al.: Untersuchungen der Partikelemission von Dieselmotoren auf direkt wirkende Mutagenität. MTZ 44, 263–267 (1983).Google Scholar
  65. 65.
    Foster, R. W., Escher, W. J. D.: A Project Plan for Implementing a Hydrogen Fueled- Hydrogen Transport Rail System. E:F Technology Inc. St. Johns, MI 48879, Contract No. NAS 10–10626, 1983.Google Scholar
  66. 66.
    Smith, J. M., Nichols, L. D., Seikel, G. R.: NASA-Lewis H2-O2 MHD-Program, Proc. 14th Symp. on Engineering Aspects of Magnetohydrodynamics, Paper III, 7, 1974.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations