Skip to main content

Thermische Isolation, Speicherung und Transport von flüssigem Wasserstoff

  • Chapter
Flüssiger Wasserstoff als Energieträger

Part of the book series: Innovative Energietechnik ((ENERGIETECHNIK))

  • 277 Accesses

Zusammenfassung

Wasserstoff als tiefkalte Flüssigkeit muß zwecks Vermeidung unwirtschaftlich hoher Verdampfungsverluste in thermisch isolierten Behältern gespeichert und transportiert werden. Das gleiche gilt hinsichtlich der Isolierung von Leitungen für flüssigen Wasserstoff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Timmerhaus, K. D.: Fluid Flow and Heat Transfer. In: Applied Cryogenic Engineering, Vance, R. W., Duke, W. H. (eds.), pp. 104–151. New York: Wüey & Sons 1962.

    Google Scholar 

  • Clark, J. A., Thorogood, R. M.: Heat Transfer. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 92–197. London: Academic Press 1971.

    Google Scholar 

  • Clark, J. A.: Heat Transfer. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 121–195. New York: Wüey & Sons 1963.

    Google Scholar 

  • Roder, H. M., McCarty, R. D., Hall, W. J.: Computer Programs for Thermodynamic and Transport Properties of Hydrogen. Nat. Bureau of Standards, NBS-TN-625 (1972).

    Google Scholar 

  • Van Gundy, D. A., Uglum, J. R.: Heat Transfer to an Uninsulated Surface at 20 K. Cryogenic Eng., Vol. 7, pp. 377–384. New York: Plenum Press 1982.

    Google Scholar 

  • Middleton, R. L., Stukey, J. M., Schell, J. T. et al.: Development of Lightweight External Insulation System for Liquid-Hydrogen Stages of the Saturn V Vehicle. Adv. Cryog. Eng., Vol. 10, pp. 216–223. New York: Plenum Press 1964.

    Google Scholar 

  • Rittenhouse, J. B.: Application of an Adhesively Bonded Cryogenic Insulation System. N AS A-TM-X-57823, NTIS (1966).

    Google Scholar 

  • Leonhard, K. E., Oglin, B., Zimni, W. F.: Determination of the Thermal Conductivity, the Specific Heat and the Weight by Volume of Insulations for Rocket Tanks Filled with Liquid Hydrogen. ELDO/ESRO Sci. Tech. Rev., Vol. 2, pp. 3–28 (1967). (In French.)

    Google Scholar 

  • Dearing, D. L.: Summary of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation Development and Techniques for Future Improvemeni. Bull. Int. Inst. Froid, Annex e 2, 233–246 (1965).

    Google Scholar 

  • Dearing, D. L.: Development of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation. Adv. Cryog. Eng., Vol. 11, pp. 89–97. New York: Plenum Press 1966.

    Google Scholar 

  • Lemons, C. R., Watts, C. R., Salmassy, O. K.: Development of Advanced Materials Composites for Use as Insulation for LH2-Tanks. McDonnel-Douglas, Astronautics Co., NASA-CR-124388, NASA-CR-123928 (1973).

    Google Scholar 

  • McGrew, J. J.: Cellular Insulation for Use with Low Temperature Liquids. US-Pat. No. 3.755–756(1973).

    Google Scholar 

  • Jonke, R. J.: Insulation Systems for Cryogenic Stages. Rev. Sci. Tech. CECLES/CERS 3,17–48 (1971).

    Google Scholar 

  • Tarid, H. M., Boissin, J. C., Segel, M. P.: Thermal Insulation for Liquid Hydrogen Space Tankage. Adv. Cryog. Eng., Vol. 12, pp. 274–285. New York: Plenum Press 1967.

    Google Scholar 

  • Yates, G. B.: PPO Foam: Liquid Hydrogen Insulation. Adv. Cryog. Eng., Vol. 19, pp. 327–337. New York: Plenum Press 1974.

    Google Scholar 

  • Reed, R. P., Arvidson, J. M., Durcholoz, R. L.: Tensile Properties of Polyurethane and Polystyrene Foams from 76 to 300 K. Adv. Cryog. Eng., Vol. 18, pp. 184–193. New York: Plenum Press 1973.

    Google Scholar 

  • Klezath, H.: Wärmeisolierung von Speicherbehältern für tiefsiedende Flüssigkeiten. Erdöl-Erdgas85,145–149 (1969).

    Google Scholar 

  • Johnson, C. L., Hollweger, D. J.: Some Heat Transfer Considerations in Non-Evacuated Cryogenic Powder Insulation. Adv. Cryog. Eng., Vol. 11, pp. 77–88. New York: Plenum Press 1966.

    Google Scholar 

  • Scott, R. B.: Insulation. In: Cryogenic Engineering, pp. 142–214. New York: von Norstrand 1959.

    Google Scholar 

  • Kropschot, R. H.: Low-Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York: Wiley & Sons 1963.

    Google Scholar 

  • Jacobs, R. B.: Thermal Insulation, Storage, Transport and Transfer of Liquid Hydrogen. In: Technology and Uses of Liquid Hydrogen, Scott, R. B. (ed.), pp. 106–148. New York: Pergamon Press 1964.

    Google Scholar 

  • Kropschot, R. H.: Insulation Technology. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 239–250. New York: Wiley & Sons 1963.

    Google Scholar 

  • Molnar, W.: Insulation. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 199–236. London: Academic Press 1971.

    Google Scholar 

  • Knudsen, M.: Ann. d. Physik 31, 205 (1910); 32,809 (1910); 33,1435 (1910); 593 (1911);6, 149(1930).

    Google Scholar 

  • Corrucini, R. J.: Gaseous Heat Conduction at Low Pressures and Temperatures. Vacuum 7,8 (1957).

    Google Scholar 

  • Gerthsen, C.: Physik. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Weitz, M.: Theorie und Praxis der Vakuumtechnik. Braunschweig: Vieweg & Sohn 1965.

    Google Scholar 

  • Kropschot, R. H., Burgers, W.: Perlite for Cryogenic Insulation. Adv. Cryog. Eng., Vol. 8, pp. 221–229. New York: Plenum Press 1963.

    Google Scholar 

  • Hunter, B. J., Kropschot, R. H., Schrodt, J. E., Fulk, M. M.: Metal Powder Additives in Evacuated-Powder Insulation. Adv. Cryog. Eng., Vol. 5, pp. 146–156. New York: Plenum Press 1960.

    Google Scholar 

  • Knight, B. L., Timmerhaus, K. D., Kropschot, R. H.: Analysis of Thermal Diffusity Evaluation under Transient Conditions for Powder Insulation. Adv. Cryog. Eng., Vol. 18, pp. 112–117. New York: Plenum Press 1973.

    Google Scholar 

  • Cunnington, G. R.: Apparent Thermal Conductivity of Uncoated Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 21, pp. 263–271. New York: Plenum Press 1976.

    Google Scholar 

  • Cunnington, G. R., Tien, C. L.: Heat Transfer in Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 18, pp. 103–111. New York: Plenum Press 1973.

    Google Scholar 

  • Tien, C. L., Cunnington, G. R.: Recent Advances in High-performance Cryogenic Thermal Insulation. Cryogenics 12,419–421 (1972).

    Article  Google Scholar 

  • Nayak, A. L., Tien, C. L.: Thermal Conductivity of Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 21, pp. 251–262. New York: Plenum Press 1976.

    Google Scholar 

  • Petersen, P.: The Heat-tight Vessel. Swedish Technical Research Council Rep., No. 706 (1951); see also: Sartryck ur TVF 29,4 (1958).

    Google Scholar 

  • Kropshot, R. H.: Low Temperature Insulation. In: Applied Cryogenic Engineering, 152–169. New York: Wüey & Sons 1962.

    Google Scholar 

  • Frost, W.: Heat Transfer at Low Temperatures. New York: Plenum Press 1975.

    Google Scholar 

  • Caren, R. P., Cunnington, G. R.: Heat Transfer in Multilayer Insulation Systems. Chem. Eng. Progr. Symp. SER, No. 87, Vol. 64, pp. 67–81 (1968).

    Google Scholar 

  • Glaser, P. E.: Multilayer Insulation for Large Vessels Used in Transporting and Storing Cryogenic Liquids. Mech. Eng. 87,23–27 (1965).

    Google Scholar 

  • Kutzner, K., Schmidt, F., Wietzke, I.: Radiative and Conductive Heat Transmission Through Superinsulations — Experimental Results for Aluminium Coated Plastic Foils. Cryogenics 13,396–404 (1973).

    Article  Google Scholar 

  • Sparrow, E. M., Cess, R. D.: Radiation Heat Transfer. Beimond, Calif.: Brooks/Cole Puhl. Comp. 1963.

    Google Scholar 

  • Coston, R. M.: Handbook of Thermal Design Data for Multilayer Insulation Systems, Vol. 2. Lockheed Missiles and Space Co., Sunnyvale, Calif., Rep. No. NASA-CR 87485 (1967).

    Google Scholar 

  • Ruccia, F., Hinckley, R.: The Surface Emittance of Vacuum-metallized Polyester Films. Adv. Cryog. Eng., Vol. 12, pp. 218–227. New York: Plenum Press 1967.

    Google Scholar 

  • Bell, G. et al.: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. Adv. Cryog. Eng., Vol. 22. New York: Plenum Press 1977.

    Google Scholar 

  • Swalley, F. E., Nevins, C. D.: Practical Problems in Design of High-performance Multilayer Insulation System for Cryogenic Stages. Adv. Cryog. Eng., Vol. 10, pp. 208–215. New York: Plenum Press 1965.

    Google Scholar 

  • Coston, R. M., Nast, T. C.: Experimental Evaluation of the Equations and Parameters Governing Flow Through Multilayer Insulations Düring Evacuation. Adv. Cryog. Eng., Vol. 11, pp. 56–64. New York: Plenum Press 1966.

    Google Scholar 

  • Vliet, G. C., Coston, R. M.: Thermal Energy Transport Parallel to the Laminations in Multilayer Insulation. Adv. Cryog. Eng., Vol. 13, pp. 671–679. New York: Plenum Press 1968.

    Google Scholar 

  • Murray, D. O.: Degradation of Multilayer Insulation Systems by Penetrations. Adv. Cryog. Eng., Vol. 13, pp. 680–689. New York: Plenum Press 1968.

    Google Scholar 

  • Nast, T. C.: Effective Purging of High Performance Multilayer Insulation Systems. Adv. Cryog. Eng., Vol. 11, pp. 49–55. New York: Plenum Press 1966.

    Google Scholar 

  • Priee, J. W.: Measuring the Gas Pressure within a High-performance Insulation Blanket Adv. Cryog. Eng., Vol. 13, L-l, pp. 662–670. New York: Plenum Press 1968.

    Google Scholar 

  • Scurlock, R. G., Saull, B.: Development of Multilayer Insulation with Thermal Conductivities below 0,1 juW cm”1K”1. Cryogenics 16,303–311 (1976).

    Article  Google Scholar 

  • Paivanas, J. A., Roberts, O. P., Wang, D. I. J.: Multishielding — an Advanced Superinsulation Technique. Adv. Cryog. Eng., Vol. 10, pp. 197–207. New York: Plenum Press 1965.

    Google Scholar 

  • Bell, G. A., Nast, T. C., Wedel, R. K.: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. Adv. Cryog. Eng., Vol. 21, pp. 272–282. New York: Plenum Press 1976.

    Google Scholar 

  • Urbach, A. R., Herring, R. N.: A Long-term Helium Dewar for Space Experiments. Proc. 6th Int. Cryog. Eng. Conf., 154–156, 1974.

    Google Scholar 

  • Stewart, W. F.: Operating Experience with a Liquid Hydrogen FueledBuick and Refueling System. Proc. 4th Int. Hydrogen Energy Conf., Pasadena (June 1982), Vol. 3, pp. 1071–1093. New York: Pergamon Press 1982.

    Google Scholar 

  • Niendorf, L. R., Choksi, S. C.: Ultra-efficient Insulation System for Solid Cryogen Coolers. Adv. Cryog. Eng., Vol. 12, pp. 286–299. New York: Plenum Press 1967.

    Google Scholar 

  • Edeskuty, F. J., Williamson, K. D. jr.: Storage and Handling of Cryogens. Adv. Cryog. Eng., Vol. 17, pp. 56–68. New York: Plenum Press 1972.

    Google Scholar 

  • Segel, M. P.: Experimental Study of Phenomena of Stratification and Pressurization of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 10, pp. 308–313. New York: Plenum Press 1964.

    Google Scholar 

  • Birmingham, B. W., Brown, E. H., Class, C. R., Schmidt, A. F.: Vessels for the Storage and Transport of Liquid Hydrogen. J. Res. Nat. Bur. Stand., A; 58, 243–253, Research paper 2757 (1957).

    Google Scholar 

  • Liebenberg, D. H., Stokes, R. W., Edeskuty, F. J.: Ch Oldown and Storage Losses of Large Liquid Hydrogen Storage Dewars. Adv. Cryog. Eng., Vol. 11, pp. 554–560. New York: Plenum Press 1966.

    Google Scholar 

  • Füller, P. D., McLagan, J. N.: Storage and Transfer of Cryogenic Fluids. In: Applied Cryogenic Engineering, Vance, R. W., Duke, W. M. (eds.). Sect. I Cryogenic Storage Vessels and Transport Trailers, pp. 215–237, Sect. II Transfer Lines, pp. 238–254. New York: Wiley & Sons 1962.

    Google Scholar 

  • Edeskuty, F. J.: Nuclear Propulsion. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 352–374. New York: Wüey & Sons 1963.

    Google Scholar 

  • Sind, C. F.: Transmission of Hydrogen. In: Selected Topics on Hydrogen Fuel, Hard, J. (ed.). NBS-Spec. PubL 419, 1975.

    Google Scholar 

  • Jacobs, R. B.: Long Distance Transfer of Liquefied Gases. Proc. 2nd Cryog. Eng. Conf., Boulder, Colo., 1956. Nat. Bureau of Stand., 1957.

    Google Scholar 

  • Croft, A. J.: 14 Meter Liquid Hydrogen Line. Cryogenics 10, 167–168 (1970).

    Article  Google Scholar 

  • Stuchly, J.: Internally Insulated Cryogenic Pipelines. Adv. Cryog. Eng., Vol. 21, pp. 531–537. New York: Plenum Press 1976.

    Google Scholar 

  • Thurston, R. S., Rogers, J. D., Skoglund, V. J.: Pressure Oscillations Induced by Forced Convection Heating of Dense Hydrogen. Adv. Cryog. Eng., Vol. 12, pp. 438–451. New York: Plenum Press 1967.

    Google Scholar 

  • Flieder, W. G., Smith, W. J., Wetmore, K. R.: Flexibility Considerations for the Design of Cryogenic Transfer Lines. Adv. Cryog. Eng., Vol. 5, pp. 111–119. New York: Plenum Press 1960.

    Google Scholar 

  • Steward, W. G.: Transfer Line Surge. Adv. Cryog. Eng., Vol. 10, pp. 313–323. New York: Plenum Press 1965.

    Google Scholar 

  • Thurston, R. S.: Probing Experiments on Pressure Oscillations in Two Phase and Super- critical Hydrogen with Forced Convection Heat Transfer. Adv. Cryog. Eng., Vol. 10, pp. 305–312. New York: Plenum Press 1965.

    Google Scholar 

  • Burke, J. C., Byrnes, W. R., Post, A. H., Ruccia, F. E.: Pressurized Cooldown of Cryogenic Transfer Lines. Adv. Cryog. Eng., Vol. 4, pp. 378–394. New York: Plenum Press 1964.

    Google Scholar 

  • Bronson, J. C., Edeskuty, F. J., et al.: Problems in Cooldown of Cryogenic Systems. Adv. Cryog. Eng., Vol. 7, pp. 198–205. New York: Plenum Press 1960.

    Google Scholar 

  • Baker, O.: Design of Pipe Lines for Simultaneous Flow of Oil and Gas. The Oil and Gas Journ.53,185–195 (1954).

    Google Scholar 

  • Srinivasan, K., Seshagiri, R., Krishna Murthy, M. V.: Analytical and Experimental Investigations on Cooldown of Short Cryogenic Transfer Lines. Cryogenics 74,489–494 (1974).

    Article  Google Scholar 

  • Beard, C. S.: Cryogenic Valves, a Survey. Cryog. Eng. News 2,62–68 (1967).

    Google Scholar 

  • Biermann, A. E., Kohl, R. C.: Preliminary Study of aPiston Pump for Cryogenic Fluids. NASA-Memo 3/6/59E, Lewis Res. C. (1959).

    Google Scholar 

  • Carter, T. A. Jr.: Pumps for Liquid Hydrogen. Cryog. Tech. 3,172–175 (1967).

    Google Scholar 

  • Knuth, W. H., Farquhar, J., Lindley, B. K.: Design Study of Modification of Ml Liquid Hydrogen Turbopumps for Use in Nuclear Reactor Test Facility. NASA-CR-54422 1965.

    Google Scholar 

  • Farquhar, J., Lindley, B. K.: Hydraulic Design of Ml Liquid Hydrogen Turbopumps. NASA-CR-54822, 1966.

    Google Scholar 

  • Ribble, G. H., Jr., Turney, G. E.: Experimental Study of Low Speed Operating Characteristics of a Liquid Hydrogen Centrifugal Turbopump. NASA-TM-X-1861, August 1969.

    Google Scholar 

  • Stinson, H. P., Strickland, R. J.: Experimental Findings from Zero Tank Net Positive Suction Head Operation of the J-2 Hydrogen Pump. NASA-TN-D-6824, August 1972.

    Google Scholar 

  • Martin, K. P., Jacobs, R. B., Hardy, R. J.: Performance of Pumps with Liquefied Gases. Adv. Cryog. Eng., Vol. 2, pp. 295–302. New York: Plenum Press 1960.

    Google Scholar 

  • Pearsall, I. S.: Supercavitating Pumps for Cryogenic Liquids. Cryogenics 12,422–426 (1972).

    Article  Google Scholar 

  • Di Stefano, J. F., Caine, G. H.: Cavitation Characteristics of Tank-mounted Cryogenic Pumps and their Predicted Performance under Reduced Gravity. Adv. Cryog. Eng., Vol. 7, pp. 277–290. New York: Plenum Press 1962.

    Google Scholar 

  • Caine, G. H., Schäfer, L., Burgeson, D.: Pumping of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 4, pp, 241–254. New York: Plenum Press 1960.

    Google Scholar 

  • Morpurgo, M.: Design and Construction of a Pump for Liquid Helium. Cryogenics 17, 91–93 (1977).

    Article  Google Scholar 

  • Goltzmann, C. F.: High Pressure Liquid Hydrogen and Helium Pumps. Adv. Cryog. Eng., Vol. 5, pp. 289–298. New York: Plenum Press 1960.

    Google Scholar 

  • Scibbe, H. W.: Bearings and Seals for Cryogenic Fluids. NASA-TM-X-52415, 1968.

    Book  Google Scholar 

  • Brewe, D. E., Coe, H. H., Scibbe, H. W.: Cooling Studies with High Speed Ball Bearings Operating in Cold Hydrogen Gas. ASLE-Trans., Vol. 12, No. 1, pp. 66–76, Januar 1969.

    Article  Google Scholar 

  • Coe, H. H., Brewe, D. E., Scibbe, H. W.: Cooling Requirements of Ball Bearings Lubricated by Glass-Fiber-Filled PTFE Retainers in Cold Hydrogen Gas. NASA-TN-D-5607, 26 pp., February 1970.

    Google Scholar 

  • Wilson, W. A., Martin, K. B., Brennan, J. A., et al.: Evaluation of Ball Bearing Separator Materials Operating Submerged in Liquid Nitrogen. Trans. ASLE 4, 50–58 (1961).

    Google Scholar 

  • Chelton, D. B., Brennan, J. A., Scott, L. E.: Dry Gas Operation of Ball Bearings at Cryogenic Temperatures. Adv. Cryog. Eng., Vol. 7, pp. 273–276. New York: Plenum Press 1960.

    Google Scholar 

  • Brewe, D. E., Wisander, D. W., Scibbe, H. W.: Performance of 40-millimeter Bore Bearings with Lead and Lead-alloy Retainers in Liquid Hydrogen at 192 Million DN. NASA- Lewis-Res. C., Tech. Note, NASA-TN-D-6091, November 1982.

    Google Scholar 

  • Jacobs, R. B.: Prediction of Symptoms of Cavitation. J. Res. NBS, 65 C, No. 3, pp. 156, July/Sept. 1961.

    Google Scholar 

  • Blackford, J. E., Haiford, P., Tantam, D. H.: Expanders and Pumps. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 403–489. London: Academic Press 1971.

    Google Scholar 

  • Sindt, C. F.: A Summary of the Characterization Study of Slush Hydrogen. Cryogenics 10(5), 372–380 (1970).

    Article  Google Scholar 

  • McCarty, R. D., Hord, J., Roder, H. M.: Selected Properties of Hydrogen, NBS-Monograph 168, U.S.-Government Printing Office, 1981.

    Google Scholar 

  • Sindt, C. F., Ludtke, P. R., Daney, D. E.: Slush Hydrogen Fluid Characterization and Instrumentation. NBS-Tech. Note No. 377, 64 pp. (1969).

    Google Scholar 

  • Schraewer, R., Daus, W.: Herstellung und Förderung von Wasserstoffmatsch. Forschungsbericht NT 200 des BMFT, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag/Wien

About this chapter

Cite this chapter

Peschka, W. (1984). Thermische Isolation, Speicherung und Transport von flüssigem Wasserstoff. In: Flüssiger Wasserstoff als Energieträger. Innovative Energietechnik. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8748-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8748-7_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8749-4

  • Online ISBN: 978-3-7091-8748-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics