Skip to main content

Ionic Currents as Control Mechanism in Cytomorphogenesis

  • Chapter
Cytomorphogenesis in Plants

Part of the book series: Cell Biology Monographs ((CELLBIOL,volume 8))

Abstract

As plant cells develop into multicellular organisms, three-dimensional patterns are formed without the cells possessing genetically laid down plans for these patterns. Therefore, a cell needs additional information for its proper spatial development to indicate, for instance, in which direction it should grow or in which plane it should divide. This information generally comes from external physical factors such as light, gravity, or pressure or from chemical factors such as ion or hormone gradients. Some examples of the effects of such factors on the morphogenesis of plant cells are illustrated in Figs. 1 and 2. When, for instance, zygotes of the brown algae Fucus and Pelvetia, which are practically nonpolar cells, are exposed to light from one side or only partly illuminated or exposed to a K+ gradientthey grow on the side turned away from the light or at the shaded side or on the side with the higher K+ concentration, respectively (Bentrup 1971, Bentrup et al. 1967, Jaffe 1968). When the tip-growing tubes of the yellow-green alga Vaucheria are locally irradiated with blue light, an additional growth zone is formed on this spot, which leads to branching within a few hours (Kicherer and Weisenseel, unpublished).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ã…berg, H., 1978: Light and branch formation in the alga Vaucheria dichotoma (Xanthophyceae). Physiol. Plant. 44, 224–230.

    Article  Google Scholar 

  • Achenbach, F., Weisenseel, M. H., 1981: Ionic currents traverse the slime mould Physarum. Cell Biology International Reports 5, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Bentrup, F.-W., 1968: Die Morphogenese pflanzlicher Zellen im elektrischen Feld. Z. Pflanzenphysiol. 59, 309–339.

    Google Scholar 

  • Bentrup, F.-W., 1971: Räumliche Zelldifferenzierung. Umschau 10, 335–339.

    Google Scholar 

  • Bentrup, F.-W., Sand an, T., Jaffe, L. F., 1967: Induction of polarity inFucus eggs by potassium ion gradients. Protoplasma 64, 254–266.

    Article  Google Scholar 

  • Blatt, M. R., Briggs, W. R., 1980: Blue-light-induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga Vaucheria sessilis. Planta 147, 355–362.

    Article  Google Scholar 

  • Blatt, M. R., Wessells, N. K., Briggs, W. R., 1980: Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis. Planta 147, 363–375.

    Article  CAS  Google Scholar 

  • Bosch, F., El Goresy, A., Herth, W., Martin, B., Nobiling, R., Povh, B., Reiss, H.-D., Traxel, K., 1980: The Heidelberg proton microprobe. Nuclear Science Applications 1, 33–55.

    Google Scholar 

  • Brower, D. L., McIntosh, J. R., 1980: The effects of applied electric fields on Micrasterias. I. Morphogenesis and the pattern of cell wall deposition. J. Cell Sci. 42, 261–211.

    PubMed  CAS  Google Scholar 

  • Brower, D. L., Giddings, T. H., 1980: The effects of applied electric fields on Micrasterias. II. The distributions of cytoplasmic and plasma membrane components. J. Cell Sci. 42, 279–290.

    PubMed  CAS  Google Scholar 

  • Brunt, J. Van, Harold, F. M., 1980: Ionic control of germination of Blastocladiella emersonii zoospores. J. Bacteriol. 141, 735–744.

    PubMed  Google Scholar 

  • Chen, T.-H., Jaffe, L. F., 1979: Forced calcium entry and polarized growth of Funaria spores. Planta 144, 401–406.

    Article  CAS  Google Scholar 

  • Cohen, R. J., 1974: cAMP levels in Phycomyces during a response to light. Nature 251, 144–146.

    Google Scholar 

  • Geddes, L. A., Hoff, H. E., 1971: The discovery of bioelectricity and current electricity. IEEE Spectrum 8, 38–46.

    Article  Google Scholar 

  • Haupt, W., 1957: Die Induktion der Polarität bei der Spore von Equisetum. Planta 49, 61–90.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D., 1957: Movements of labelled calcium in squid giant axons. J. Physiol. 138, 253–281.

    PubMed  CAS  Google Scholar 

  • Jaffe, L. A., Weisenseel, M. H., Jaffe, L. F., 1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 67, 488–492.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. F., 1966: Electrical currents through the developing Fucus egg. Proc. Nat. Acad. Sci. U.S.A. 56, 1102–1109.

    Article  CAS  Google Scholar 

  • Jaffe, L. F., 1968: Localization in the developing Fucus egg and the general role of localizing currents. Advan. Morphog. 7, 295–328.

    CAS  Google Scholar 

  • Jaffe, L. F., 1969: On the centripetal course of development, the Fucus egg, and self-electrophoresis. Develop. Biol. Suppl. 3, 83–111.

    Google Scholar 

  • Jaffe, L. F., 1977: Electrophoresis along cell membranes. Nature 265, 600–602.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. F., 1980: Control of plant development by steady ionic currents. In: Plant membrane transport: current conceptual issues (Spanswick, R. M., Lucas, W. J., Dainty, J., eds.), pp. 381–388. Elsevier/North-Holland: Biomedical Press.

    Google Scholar 

  • Jaffe, L. F., Nuccitelli, R., 1974: An ultrasensitive vibrating probe for measuring steady extra- cellular currents. J. Cell Biol. 63, 614–628.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. F., Nuccitelli, R., 1977: Electrical controls of development. Ann. Rev. Biophys. Bioeng. 6, 445–476.

    Article  CAS  Google Scholar 

  • Janistyn, B., Drumm, H., 1972: Light-mediated changes of concentration of cAMP in mustard seedlings. Naturwissenschaften 59, 218.

    Article  CAS  Google Scholar 

  • Kataoka, H., 1975: Phototropism in Vaucheria geminata II. The mechanism of bending and branching. Plant Cell Physiol. 16, 439–448.

    Google Scholar 

  • Kataoka, H., 1977: Phototropic sensitivity in Vaucheria geminata regulated by 3/,5/-cyclic AMP. Plant Cell Physiol. 18, 431–440.

    CAS  Google Scholar 

  • Lovett, J. S., 1975: Growth and differentiation of the water mold Blastocladiella emersonii: Cytodifferentiation and the role of ribonucleic acid and protein synthesis. Bacteriol. Reviews 39, 345–404.

    CAS  Google Scholar 

  • Lund, E. J., 1923: Electrical control of organic polarity in the egg of Fucus. Botan. Gaz. 76, 288–301.

    Article  Google Scholar 

  • Marsh, G., Beams, H. W., 1945: The orientation of pollen tubes of Vinca in the electric current. J. Cell. Comp. Physiol. 25, 195–204.

    Google Scholar 

  • Noväk, B., Bentrup, F.-W., 1972: An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108, 227–244.

    Article  Google Scholar 

  • Nuccitelli, R., 1978: Oöplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Develop. Biol. 62, 13–33.

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli, R., Jaffe, L. F., 1974: Spontaneous current pulses through developing fucoid eggs. Proc. Nat. Acad. Sci. U.S.A. 71, 4855–4859.

    Article  CAS  Google Scholar 

  • Peng, H. B., Jaffe, L. F., 1976: Polarization of fucoid eggs by steady electrical fields. Develop. Biol. 53, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Poo, M.-M., Robinson, K. R., 1977: Electrophoresis of concanavalin A reeeptors along embryonic muscle cell membrane. Nature 265, 602–605.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, H.-D., Herth, W., 1978: Visualization of the Ca2+-gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97, 373–377.

    Article  Google Scholar 

  • Reiss, H.-D., Herth, W., 1979 a: Calcium ionophore A 23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145, 225–232.

    Google Scholar 

  • Reiss, H.-D., Herth, W., 1979 b: Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta 146, 615–621.

    Article  CAS  Google Scholar 

  • Reissig, J. L., 1977: The divalent cation ionophore A 23187 induces branching in Neurospora. J. Cell Biol. 75, 30 a.

    Google Scholar 

  • Robinson, K. R., Jaffe, L. F., 1975: Polarizingfucoid eggs drive a calcium current through themselves. Science 187, 70–72.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, K. R., Cone, R., 1980: Polarization of fucoid eggs by a calcium ionophore gradient. Science 207, 77–78.

    Article  PubMed  CAS  Google Scholar 

  • Sand, O., 1973: On orientation of rhizoid outgrowth of Ulva mutabilis by applied electric fields. Exp. Cell Res. 76, 444–446.

    Article  PubMed  CAS  Google Scholar 

  • Schmiedel, G., Schnepf, E., 1980: Polarity and growth of caulonema tip cells of the moss Funaria hygrometrica. Planta 147, 405–413.

    Article  CAS  Google Scholar 

  • Weisenseel, M. H., 1979: Induction of polarity. In: Encyclopedia of plant physiology, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 485–505. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Weisenseel, M. H., Nuccitelli, R., Jaffe, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567.

    Article  PubMed  CAS  Google Scholar 

  • Weisenseel, M. H., Jaffe, L. F., 1976: The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133, 1–7.

    Article  Google Scholar 

  • Weisenseel, M. H., Dorn, A., Jaffe, L. F., 1979: Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 64, 512–518.

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann, K. E., Stockem, W., 1970: Die Regeneration des Plasmalemms von Physarum polycephalum. W. Roux’ Archiv 164, 321–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag/Wien

About this chapter

Cite this chapter

Weisenseel, M.H., Kicherer, R.M. (1981). Ionic Currents as Control Mechanism in Cytomorphogenesis. In: Kiermayer, O. (eds) Cytomorphogenesis in Plants. Cell Biology Monographs, vol 8. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8602-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8602-2_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8604-6

  • Online ISBN: 978-3-7091-8602-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics