Some Applications of Extended Interval Arithmetic to Interval Iterations

  • S. M. Markov


The calculation of united extensions of real functions of one variable by means of primitive interval Operations is considered. It is demonstrated that extended interval arithmetic is a convenient tool for treating this problem. Some direct applications of the results obtained to interval iteration procedures are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Mannheim: Bibliographisches Institut 1974.MATHGoogle Scholar
  2. [2]
    Caprani, O., Madsen, K.: Contraction mappings in interval analysis. BIT 15, 362–366 (1975).CrossRefMATHGoogle Scholar
  3. [3]
    Markov, S.: Extended interval arithmetic. Compt. Rend. Acad. Bulg. Sei. 31, 163–166 (1978).MATHGoogle Scholar
  4. [4]
    Markov, S.: Extended interval arithmetic and some applications. Freiburger Intervall-Berichte 78/4, Institut für Angewandte Mathematik, Univ. Freiburg i. Br. 1978.Google Scholar
  5. [5]
    Moore, R. E.: Interval Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1966.MATHGoogle Scholar
  6. [6]
    Nickel, K.: Intervall-Mathematik. ZAMM 58, T72-T85 (1978).MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • S. M. Markov
    • 1
  1. 1.Mathematisches InstitutBulgarische Akademie der WissenschaftenSofiaBulgaria

Personalised recommendations