Skip to main content

Molecular Cloning of DNA from the R-Plasmid R6K

  • Conference paper
R-Factors: Their Properties and Possible Control

Part of the book series: Topics in Infectious Diseases ((TIDIS,volume 2))

  • 41 Accesses

Abstract

Bacterial plasmids are non-essential in the sense that they may be lost from a cell under most circumstances without affecting cell viability. As adequately documented elsewhere in this volume, the presence of a plasmid may confer upon a host cell the capacity to survive in an adverse environment or to better compete with organisms of the same or related species. Plasmids have a range of molecular mass from 0.5 × 106 daltons to greater than 150 × 106 daltons and vary in their mol fraction guanine and cytocine content from 0.39 to 0.72. Consequently it is as difficult to make generalizations about the basic biology of plasmids as it is about the microorganisms in which their life cycle takes place. Nonetheless at the molecular level one can make the generalization that plasmids are double-stranded covalently closed molecules of DNA. In addition plasmids generally fall into two molecular classes. One class, best typified by ColEl, is of relatively small size (generally less than 10 × 106 daltons in mass), non-conjugative and is generally found as a multi-copy pool within its host cells. The other class, best typified by the classical sex factor, F, is of relatively large molecular mass (generally greater than 30 × 106 daltons), usually conjugative and present in a limited number of copies per host cell. One (but certainly not the only) exception to these general molecular properties of plasmids is R6K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Berk, A. J., and Clayton, D. A. Mechanisms of mitochondrial DNA replication in mouse L-cells: Asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol., 86, 801–824 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. Berk, A. J., and Clayton, D. A. Mechanisms of mitochondrial DNA replication in mouse L-cells: Topology of circular daughter molecules and dynamics of catenated oligomer formation. J. Mol. Biol., 100, 85–102 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. Betlach, M. C., Hershfield, V., Chow, L., Brown, W., Goodman, H. M., and Boyer, H. W. A restriction endonuclease analysis of the bacterial plasmid controlling the EcoRI restriction and modification of DNA. Fed. Proc., 35, 2037–2043 (1976).

    PubMed  CAS  Google Scholar 

  4. Bolivar, F., Rodriquez, R., Betlach, M., and Boyer, H. W. Construction and characterization of new cloning vehicles. Gene, in press (1977).

    Google Scholar 

  5. Bolivar, F., Rodriquez, R. L., Greene, P. J., Betlach, M. C..Heymeker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. A multipurpose cloning system: Construction and characterization. Gene, in press (1977).

    Google Scholar 

  6. Bourgaux, P., and Bourgaux-Ramoisy, D. Is a specific protein responsible for the supercoiling of polyoma DNA? Nature, 235, 105–107 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Cabello, F., Timis, K., and Cohen, S. N. Replication control in a composite plasmid constructed by in vitro linkage of two distinct repli-cons. Nature, 259, 285–290 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. Champoux, J. Evidence for an intermediate with a single-strand break in the reaction catalyzed by the DNA untwisting enzyme. Proc. Nat. Acad. Sci. U.S.A., 73, 3488–3491 (1976).

    Article  Google Scholar 

  9. Champoux, J., and Dulbecco, R. An activity from mammalian cells that untwists superhelical DNA. A possible swivel for DNA replication. Proc. Nat. Acad. Sci. U.S.A., 69, 143–146 (1972).

    Article  CAS  Google Scholar 

  10. Cohen, S. N. and Miller, C. A. Non-chromosomal antibiotic resistance in bacteria. II. Molecular nature of R factors isolated from Proteus mirabilis and Escherichia coli. J. Mol. Biol., 50, 671–687 (1970).

    Article  PubMed  CAS  Google Scholar 

  11. Crosa, J. H., Luttropp, L. K., Heffron, F., and Falkow, S. Two replication initiation sites on R plasmid DNA. Mol. Gen. Genet. 140, 39–50 (1975).

    Article  CAS  Google Scholar 

  12. Crosa, J. H., Luttropp, L. K., and Falkow, S. Mode of replication of the conjugative R-plasmid RSF1040 in Escherichia coli. J. Bacteriol., 126, 454–466 (1976).

    PubMed  CAS  Google Scholar 

  13. Crosa, J. H., Luttropp, L, K., and Falkow, S. Covalently closed circular DNA molecules deficient in superhelical density as intermediates in the plasmid life cycle. Nature, 261, 561–519 (1976).

    Article  Google Scholar 

  14. Eason, R., and Vinograd, J. Superhelix density of intracellular Simian Virus 40 deoxyribonucleic acid. J. Virol, 7, 1–7 (1971).

    PubMed  CAS  Google Scholar 

  15. Espejo, R., Espejo-Canelo, F., and Sinsheimer, R. L. A difference between intracellular and viral supercoiled PM2 DNA. J. Mol. Biol. 56, 623–626 (1971).

    Article  PubMed  CAS  Google Scholar 

  16. Falkow, S., Tompkins, L. S., Silver, R. P., Guerry, P., and LeBlanc, D. S. The replication of R-factor DNA in Escherichia coli K-12 following conjugation. Ann. N. Y. Acad. Sci., 182, 153–171 (1971).

    Article  PubMed  CAS  Google Scholar 

  17. Gellert, M., Mizuuchi, K., O’Dea, M. H., and Nash, H. A. DNA gyrase: the enzyme that introduces superhelical turns into DNA. Proc. Nat. Acad. Sci. U.S. 73, 3872–3876 (1976).

    Article  CAS  Google Scholar 

  18. Gellert, M., O’Dea, H. H., Itoh, T., and Tomizawa, J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Nat. Acad. Sci. U.S. 73, 4474–4478 (1976).

    Article  CAS  Google Scholar 

  19. Herschfield, V., Boyer, H. W., Chow, L., and Helinski, D. R. Characterization of a mini-colEI plasmid. J. Bacteriol. 126, 447–453 (1976).

    Google Scholar 

  20. Kontomichalou, P., Mitani, M., and Clowes, R. C. Circular R-factor molecules controlling penicillinase synthesis, replicating under either relaxed or stringent control. J. Bacteriol. 104, 34–55 (1970).

    PubMed  CAS  Google Scholar 

  21. Kopecko, D. J.4 and Punch, J. D. Regulation of R-factor replication in Proteus mirabilis. Ann. N. Y. Acad. Sci., 182, 207–216 (1971).

    CAS  Google Scholar 

  22. Lovett, M., Sparks, R. M., and Helinski, D. R. Bidirectional replication of plasmid R6K DNA in Escherichia coli; correspondence between origin of replication and position of single-strand break in relaxed complex. Proc. Natl. Acad. Sci. U.S.A., 73, 2905–2909 (1975).

    Article  Google Scholar 

  23. Pritchard, R. H., Barber, P. T., and Collins, J. Control of DNA synthesis in bacteria. XIX Symp. Soc. Gen. Microbiol., 19, 263–297 (1969).

    Google Scholar 

  24. Pritchard, R. H., Chandler, M. G., and Collins, J. Independence of F replication and chromosome replication in Escherichia coli. Mol. Gen. Genet. 138, 143–155 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. Rownd, R. H., and Nickel, S. Dissociation and reassociation of RFT and r-determinants of the R-factor 1Rl in Proteus mirabilis. Nature New Biol., 234, 40–43 (1971).

    Article  PubMed  CAS  Google Scholar 

  26. Rownd, R. H., Perlman, D., and Goto, N. Structure and replication of R-factor DNA in Proteus mirabilis. Microbiology 1974 (D. Schlessinger ed.), p. 76–95, Washington, D.C. American Society for Microbiology (1975).

    Google Scholar 

  27. Sakakibara, Y., and Tomizawa, J. Termination point of replication of colicin El plasmid DNA in cell extracts. Proc. Nat. Acad. Sci. U.S.A., 71, 4935–4939 (1974).

    Article  CAS  Google Scholar 

  28. Skurray, R. A., Nagaishi, H., and Clark, A. J. Molecular cloning of DNA from F sex factor of Escherichia coli K-12. Proc. Nat. Acad. Sci. U.S. 73, 64–68 (1976).

    Article  CAS  Google Scholar 

  29. Staudenbauer, W. L. Replication of colicinogenic factor El DNA: evidence for a discontinuous replication mechanism. Nucleic Acids Res., 1, 11531164 (1974)

    Google Scholar 

  30. Timmis, K., Cabello, F., and Cohen, S. N. Covalently closed circular DNA molecules with low superhelical density as intermediates in plasmid DNA replication. Nature, 261, 512–516 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. Wang, J. C. Interaction between DNA and an Escherichia coli protein W. J. Mol. Biol. 55, 523–533 (1971).

    CAS  Google Scholar 

  32. Yu, K., and Cheevers, W. P. DNA synthesis in polyoma virus infection. IV. Mechanisms of formation of closed-circular viral DNA deficient in superhelical turns. J. Virol. 17, 402–414 (1976).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag/Wien

About this paper

Cite this paper

Crosa, J.H., Luttropp, L.K., Falkow, S. (1977). Molecular Cloning of DNA from the R-Plasmid R6K. In: Drews, J., Högenauer, G. (eds) R-Factors: Their Properties and Possible Control. Topics in Infectious Diseases, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8501-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8501-8_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8503-2

  • Online ISBN: 978-3-7091-8501-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics