Abstract

Apart from cotton and food-providing plants, tobacco is the major cultivated plant in the world. It is grown in some one hundred countries and the annual production is of the order of five million tons. In view of its economic importance both in producing and consuming countries, it is not surprising that the chemistry of tobacco has attracted the attention of many investigators. More recently, health aspects and the desire to produce a tobacco substitute to counter future tobacco shortages have given further impetus to chemical research on this plant.

Keywords

Nicotinic Acid Nicotiana Tabacum Tobacco Leave Absolute Configuration Pyrrolidine Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aasen, A. J., S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 35. Two isomeric 5,6-epoxy-3-hydroxy-7-megastigmen-9-ones from Nicotiana tabacum L. Beiträge zur Tabakforsch. 8, 366 (1976).Google Scholar
  2. 2.
    Aasen, A. J., S.-O. Almqvist, T. Nishida, J. R. Hlubucek, and C. R. Enzell: To be published.Google Scholar
  3. 3.
    Aasen, A. J., and C. R. Enzell: Tobacco chemistry 30. The absolute configuration of 11-nor-8-hydroxy-9-drimanone, a constituent of Greek Nicotiana tabacum L. Acta Chem. Scand. B28, 1239 (1974).Google Scholar
  4. 4.
    Aasen, A. J., and C. R. Enzell: Tobacco chemistry 32. The absolute configuration of norsolanadione, (5S)-5-isopropyl-3E-nonen-2,8-dione, a nor-thunberganoid of Nicotiana tabacum L. Acta Chem. Scand. B29, 528 (1975).Google Scholar
  5. 5.
    Aasen, A. J., C. R. Enzell, and T. Chuman: Tobacco chemistry 33. (6S)-3-Methyl-6-isopropyl-9-oxo-2E,4E-decadienoic acid from Turkish Nicotiana tabacum L. Assignment of absolute configuration. Agr. Biol. Chem. 39, 2085 (1975).Google Scholar
  6. 6.
    Aasen, A. J., J. R. Hlubucek, S.-O. Almqvist, B. Kimland, and C. R. Enzell: Tobacco chemistry 20. Structure and synthesis of three new tobacco constituents of probable isoprenoid origin. Acta Chem. Scand. 27, 2405 (1973).Google Scholar
  7. 7.
    Aasen, A. J., J. R. Hlubucek, and C. R. Enzell: Tobacco chemistry 24. (9R)-9-Hydroxy-4-megastigmen-3-one, a new tobacco constituent. Acta Chem. Scand. B28,285(1974).Google Scholar
  8. 8.
    Aasen, A. J., J. R. Hlubucek, and C. R. Enzell: Tobacco chemistry 27. The structures of four stereoisomeric 8,12ξ-epoxylabd-14-en-13ξ-ols isolated from Greek Nicotiana tabacum L. Acta Chem. Scand. B29, 589(1975).Google Scholar
  9. 9.
    Aasen, A. J., J. R. Hlubucek, and C. R. Enzell: Tobacco chemistry 29. (7S)-10-oxo-4ξ-methyl-7-isopropyl-5E-undecen-4-olide, a new thunbergane-type nor-isoprenoid isolated from Greek Nicotiana tabacum L. Acta Chem. Scand. B29, 677 (1975).Google Scholar
  10. 10.
    Aasen, A. J., N. Junker, C. R. Enzell, J.-E. Berg, and A. M. Pilotti: Tobacco chemistry 36. Absolute configuration of tobacco thunberganoids. Tetrahedron Letters 2607 (1975).Google Scholar
  11. 11.
    Aasen, A. J., B. Kimland, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 9. 5-Methoxy-6,7-dimethylbenzofuran, a new tobacco constituent. Acta Chem. Scand. 25, 3182 (1971).Google Scholar
  12. 12.
    Aasen, A. J., B. Kimland, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 13. 8, 13-Epoxylabd-14-en-12-one and 8, 13 β-epoxylabd-14-en-12-one, two new diterpenoids from tobacco. Acta Chem. Scand. 26, 832 (1972).Google Scholar
  13. 13.
    Aasen, A. J., B. Kimland, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 15. New tobacco constituents — the structures of five isomeric megastigmatrienones. Acta Chem. Scand. 26, 2573 (1972).Google Scholar
  14. 14.
    Aasen, A. J., B. Kimland, and C. R. Enzell: Tobacco chemistry 7. Structure and synthesis of 3-oxo-α-ionol, a new tobacco constituent. Acta Chem. Scand. 25, 1481 (1971).Google Scholar
  15. 15.
    Aasen, A. J., B. Kimland, and C. R. Enzell: Tobacco chemistry 11. Total synthesis of 5-methoxy-6,7-dimethylbenzo-furan, a new tobacco constituent. Acta Chem. Scand. 25, 3537 (1971).Google Scholar
  16. 16.
    Tobacco chemistry 18. Absolute configuration of (9R)-9-hydroxy-4,7E-megastigmadien-3-one (3-oxo-α-ionol). Acta Chem. Scand. 27, 2107 (1973).Google Scholar
  17. 17.
    Aasen, A. J., B. Kimland, J. R. Hlubucek, and C. R. Enzell: Unpublished result.Google Scholar
  18. 18.
    Aasen, A. J., T. Nishida, C. R. Enzell, and M. Devreux: Tobacco chemistry 37. The absolute configuration of prenylsolanone, (9S)-6,12-dimethyl-9-isopropyltrideca-5E,10E. 12-trien-2-one, a nor-thunberganoid of Nicotiana tabacum L. Acta Chem. Scand. 30, 178(1976).Google Scholar
  19. 19.
    Aasen, A. J., Å. Pilotti, C. R. Enzell, J.-E. Berg, and A.-M. Pilotti: To be published.Google Scholar
  20. 20.
    Aasen, A. J., C. H. G. Vogt, and C. R. Enzell: Tobacco chemistry 28. Structure and synthesis of drim-8-en-7-one, a new tobacco constituent. Acta Chem. Scand. B29, 51 (1975).Google Scholar
  21. 21.
    Almqvist, S.-O., A. J. Aasen, J. R. Hlubucek, B. Kimland, and C. R. Enzell: Tobacco chemistry 23. Structures and syntheses of four new nor-isoprenoid furans from tobacco. Acta Chem. Scand. B28, 528 (1974).Google Scholar
  22. 22.
    Ayers, J. E., M. J. Fishwick, D. G. Land, and T. Swain: Off-flavour of dehydrated carrot stored in oxygen. Nature 203, 81 (1964).Google Scholar
  23. 23.
    Bailey, J. A., R. S. Burden, and G. G. Vincent: Capsidiol: an antifungal compound produced in Nicotiana tabacum and Nicotiana clevelandii following infection with tobacco necrosis virus. Phytochem. 14, 597 (1975).Google Scholar
  24. 24.
    Baldwin, J. E., H. H. Basson, and H. Krauss Jr.: The cleavage of aromatic nuclei with singlet oxygen: Significance in biosynthetic processes. Chem. Commun. 984 (1968).Google Scholar
  25. 25.
    Bayley, W. C, A. K. Boose, R. M. Ikeda, R. H. Newman, H. V. Secor, and C. Varsel: The isolation from tobacco of 2-hydroxy-2,6,6-trimethylcyclohexylidene acetic acid-γ-lactone and its synthesis. J. Organ. Chem. 33, 2819 (1968).Google Scholar
  26. 26.
    Becket, A. H., P. Jenner, and J. W. Gorrod: Characterization of the diastereo-isomers of nicotine-l-N-oxide, a metabolite of nicotine, and other possible oxidation products by nuclear magnetic resonance spectroscopy. Xenobiotica 3, 557 (1973).Google Scholar
  27. 27.
    Bodn Á. R. I., and L. Nagy: Pyridine content of tobacco. Z. Untersuch. Lebensm. 74, 302 (1937).Google Scholar
  28. 28.
    Bolt, A. J. N.: 1′-Hexanoylnornicotine and 1′-octanoylnornicotine from tobacco. Phytochem. 11, 2341 (1972).Google Scholar
  29. 29.
    Bolt, A. J. N., and R. E. Clarke: Cholesterol glucoside in tobacco. Phytochem. 9, 819 (1970).Google Scholar
  30. 30.
    Bondarovich, H. A., P. Friedel, V. Krampl, J. A. Renner, F. W. Shephard, and M. Gianturco: Volatile constituents of coffee. Pyrazines and other compounds. J. Agric. Food Chem. 15, 1093 (1967).Google Scholar
  31. 31.
    Booth, J., and E. Boyland: The metabolism of nicotine into two optically-active stereoisomers of nicotine-1′-oxide by animal tissues in vitro and by cigarette smokers. Biochem. Pharmacol. 19, 733 (1970).Google Scholar
  32. 32.
    Brandänge, S., and L. Lindblom: ITN-vinyl as N-H protecting group — a convenient synthesis of myosmine. Acta Chem. Scand. B30, 93 (1976).Google Scholar
  33. 33.
    Breuer, E., and D. Melumad: A one-step synthesis of nicotine from cyclopropyl 3-pyridyl ketone. Tetrahedron Letters 3595 (1969).Google Scholar
  34. 34.
    Burden, R. S., J. A. Bailey, and G. G. Vincent: Glutinosone, a new antifungal sesquiterpene from Nicotiana glutinosa infected with tobacco mosaic virus. Phytochem 14, 221 (1975).Google Scholar
  35. 35.
    Burden, R. S., and H. F. Taylor: The structure and chemical transformations of xanthoxin. Tetrahedron Letters 4071 (1970).Google Scholar
  36. 36.
    Cambie, R. C, K. N. Joblin, and A. F. Preston: Chemistry of the Podocarpaceae. XXX. Conversion of 8α,13-epoxylabd-14-ene into a compound with an ambergris-type odour. Austral. J. Chem. 24, 583 (1971).Google Scholar
  37. 37.
    Cambie, R. C., K. N. Joblin, and A. F. Preston: Chemistry of the Podocarpaceae. XXXIV. Some oxidation products of (13R)-labda-8(17),14-dien-13-ol (manool). Austral. J. Chem. 24, 2365 (1971).Google Scholar
  38. 38.
    Carruthers, W., and J. R. Plimmer: Sterols in green tobacco leaf. Chem. and Ind. 48 (1959).Google Scholar
  39. 39.
    Chakraborty, M. K., and J. A. Weybrew: The chemistry of tobacco trichomes. Tob. Sci. 7, 122 (1963).Google Scholar
  40. 40.
    Chan, H. W.-S.: Singlet oxygen analogs in biological systems. Coupled oxygenation of 1,3-diens by soybean lipoxidase. J. Amer. Chem. Soc. 93, 2357 (1971).Google Scholar
  41. 41.
    Chirkova, M. A., A. K. Dzizenko, and V. A. Pentegova: Neutral substances of the resin of Abies sibirica. II. Structure of a diterpenic hydroxy ketone. Khim. Prir. Soedin. 3, 86 (1967).Google Scholar
  42. 42.
    Chuman, T., H. Kaneko, T. Fukuzumi, and M. Noguchi: Isolation of two terpenoid acids, 4-isopropyl-7-methyl-5E,7-octadienoic acid and 3-isopropyl-6-methyl-4E,6-heptadienoic acid from Turkish tobacco. Agr. Biol. Chem. 38, 2295 (1974).Google Scholar
  43. 43.
    Chuman, T., H. Kaneko, T. Fukuzumi, and M. Noguchi: Acidic aroma constituents of Turkish tobacco. Terpenoid acids related to tobacco thunberganoids. Agr. Biol. Chem. 40, 587 (1976).Google Scholar
  44. 44.
    Chuman, T., and M. Noguchi: Isolation of a new terpenoid acid 2-methyl-5-iso-propyl-1-cyclopentene-l-carboxylic acid from Turkish tobacco. Agr. Biol. Chem. 39, 567 (1975).Google Scholar
  45. 45.
    Isolation of new terpenoid acids (—)-3-methyl-6-isopropyl-9-oxo-2E,4E-deca-dienoic acid and 3-isopropyl-6-oxo-2E-heptenoic acid from Turkish tobacco. Agr. Biol. Chem. In press.Google Scholar
  46. 46.
    Colledge, A., W. W. Reid, and R. Russell: The diterpenoids of Nicotiana species and their potential technological significance. Chem. and Ind. 570 (1975).Google Scholar
  47. 47.
    Comes, R. A., M. T. Core, M. D. Edmonds, W. B. Edwards, and R. W. Jenkins: Preparation of carbon-14 labelled tobacco constituents. II. The synthesis of dl-nicotine (2′-14C). J. Label. Compounds 9, 253 (1973).Google Scholar
  48. 48.
    Cornforth, J. W., B. V. Milborrow, and G. Ryback: Synthesis of (±)abscisin II. Nature 206, 715 (1965).Google Scholar
  49. 49.
    Courtney, J. L., and S. Mcdonald: A new C-20 α,β-unsaturated aldehyde (3,7,13-trimethyl-10-isopropyl-2,6,ll,13-tetradecatetraen-l-al) from tobacco. Tetrahedron Letters 459 (1967).Google Scholar
  50. 50.
    Creasy, P. J., and M. J. Saxby: Steam volatile acids of Latakia tobacco leaf. Phytochem. 8, 2427 (1969).Google Scholar
  51. 51.
    Dauben, W. G., W. E. Thiessen, and P. R. Resnick: Cembrene, a fourteen-membered ring diterpene hydrocarbon. J. Amer. Chem. Soc. 84, 2015 (1962).Google Scholar
  52. 52.
    Dawes, I. W., and R. A. Edwards: Methyl-substituted pyrazines as volatile reaction products of heated aqueous aldose, amino acid mixtures. Chem. and Ind. 2203 (1966).Google Scholar
  53. 53.
    Dwson, R. F.: On biogenesis of nornicotine and anabasine. J. Amer. Chem. Soc. 67, 503 (1945).Google Scholar
  54. 54.
    Dwson, R. F.: Advances in enzymology, New York 8, 203 (1948).Google Scholar
  55. 55.
    Dwson, R. F.: Alkaloid biogenesis. III. Specificity of the nicotine-nornicotine conversion. J. Amer. Chem. Soc. 73, 4218 (1951).Google Scholar
  56. 56.
    Dawson, R. F., D. R. Christman, A. D’Adamo, M. L. Solt, and A. P. Wolf: The biosynthesis of nicotine from isotopically labelled nicotinic acids. J. Amer. Chem. Soc. 82, 2628 (1960).Google Scholar
  57. 57.
    Dawson, R. F., D. R. Christman, and R. CH. Anderson: Alkaloid biogenesis. IV. The non-availability of nicotinic acid-[carboxyl-C14] and its ethyl ester for nicotine biosynthesis. J. Amer. Chem. Soc. 75, 5114 (1953).Google Scholar
  58. 58.
    Decker. K., H. Eberwein, F. A. Gries, und M. Brühmüller: Über den Abbau des Nikotins durch Bakterienenzyme. VI. L-6-Hydroxynicotin als erstes Zwischenprodukt. Biochem. Z. 334, 227 (1961).Google Scholar
  59. 59.
    Decker, K., und R. Sammeck: Enzymchemische Untersuchungen zum Nikotinabbau in der Kaninchenleber. Biochem. Z. 340, 326 (1964).Google Scholar
  60. 60.
    Demole, E.: Private communication.Google Scholar
  61. 61.
    Demole, E.: Chemistry of Burley tobacco flavor Nicotiana tabacum L.). Novel constituents and newer syntheses. VI. International Congress of Essentials Oils. San Francisco U.S.A. 1974.Google Scholar
  62. 62.
    Demole, E., et D. Berthet: Identification de la damascénone et de la β-damascone dans le tabac Burley. Helv. Chim. Acta 54, 681 (1971).Google Scholar
  63. 63.
    A chemical study of Burley tobacco flavour (Nicotiana tabacum L.). I. Volatile to medium volatile constituents. Helv. Chim. Acta 55, 1866 (1972).Google Scholar
  64. 64.
    A chemical study of Burley tobacco flavour A chemical study of Burley tobacco flavour Nicotiana tabacum L.). II. Medium volatile, free acidic constituents. Helv. Chim. Acta 55, 1898 (1972).Google Scholar
  65. 65.
    Demole, E., and C. Demole: A chemical study of Burley tobacco flavour (Nicotiana tabacum L.) V. Identification and synthesis of the novel terpenoid alkaloids 1,3,6,6-tetramethyl-5,6,7,8-tetrahydro-isoquinolin-8-one and 3,6,6-trimethyl-5,6-dihydro-7H-2-pyrindin-7-one. Helv. Chim. Acta 58, 523 (1975).Google Scholar
  66. 66.
    Demole, E., and C. Demole: A chemical study of Burley tobacco flavour (Nicotiana tabacum L.). VII. Identification and synthesis of twelve irregular terpenoids related to solanone including 7,8-dioxabicyclo[3.2.1] octane and 4,9-dioxabicyclo[3.3.1]nonane derivatives. Helv. Chim. Acta 58, 1867 (1975).Google Scholar
  67. 67.
    Demole, E., C. Demole, and D. Berthet: A chemical study of Burley tobacco flavour (Nicotiana tabacum L.). III. Structure determination and synthesis of 5-(4-methyl-2-furyl)-6-methylheptan-2-one (“Solanofuran”) and of 3,4,7-trimethyl-1, 6-dioxa-spiro[4.5]dec-3-en-2-one (“Spiroxabovolide”). Two new flavour components of Burley tobacco. Helv. Chim. Acta 56, 265 (1973).Google Scholar
  68. 68.
    Demole, E., C. Demole, and D. Berthet: A chemical study of Burley tobacco flavour (Nicotiana tabacum L.). IV. Identification of seven new solanone metabolites including 7,8-dioxabicyclo[3.2.1]oc-tane and 4,9-dioxabicyclo[3.3.1]nonane derivatives. Helv. Chim. Acta 57, 192 (1974).Google Scholar
  69. 69.
    Demole, E., and P. Enggist: Novel synthesis of 3,5,5-trimethyl-4-(2-butenylidene)-cyclohex-2-en-1-one, a major constituent of Burley tobacco flavour. Helv. Chim. Acta 57, 2087 (1974).Google Scholar
  70. 70.
    Demole, E., and P. Enggist: A chemical study of Burley tobacco flavour (Nicotiana tabacum L.). VI. Identification and synthesis of four irregular terpenoids related to solanone, including a prenyl-solanone. Helv. Chim. Acta 58, 1602 (1975).Google Scholar
  71. 71.
    Dewey, L. J., R. U. Byerrum, and C. D. Ball: Biosynthesis of the pyrrolidine ring of nicotine. Biochim. Biophys. Acta 18, 141 (1955).Google Scholar
  72. 72.
    Drew, M. G. B., D. H. Templeton, and A. Zalkin: The crystal and molecular structure of cembrene. Acta Cryst. B25, 261 (1969).Google Scholar
  73. 73.
    Duffield, A. M., H. Budzikiewicz, and C. Djerassi: Mass spectrometry in structural and stereochemical problems. LXXII. A study of the fragmentation processes of some tobacco alkaloids. J. Amer. Chem. Soc. 87, 2926 (1965).Google Scholar
  74. 74.
    Dymicky, M., and R. L. Stedman: Composition studies on tobacco. IV. Ergosterol, γ-sitosterol and a partially characterized steroidal glycoside from flue-cured leaves. Tob. Sci. 3, 4 (1959).Google Scholar
  75. 75.
    Composition studies on tobacco. IX. Campesterol from flue-cured leaves. Tob. Sci. 3, 179 (1959).Google Scholar
  76. 76.
    Eddy, C. R., and A. Eisner: Infrared spectra of nicotine and some of its derivatives. Anal.Chem. 26, 1428 (1954).Google Scholar
  77. 77.
    Egger, K., A. G. Dabbagh, und H. Nitsche: Überführung von Neoxanthin in Diadinochrom. Tetrahedron Letters 2995 (1969).Google Scholar
  78. 78.
    Ehrenstein, M.: Zur Kenntnis der Alkaloide des Tabaks. Chem. Ber. 64, 627 (1931).Google Scholar
  79. 79.
    Enzell, C. R.: Mass spectrometric studies of carotenoids. J. Pure and Applied Chem. 20, 497 (1969).Google Scholar
  80. 80.
    Enzell, C. R., B. Kimland, and L.-E. Gunnarsson: Tobacco Chemistry 5. Nor-solanesene, a C44-isoprenoid hydrocarbon from tobacco. Tetrahedron Letters 1983 (1971).Google Scholar
  81. 81.
    Eppenberger, U., L. Hirth, und G. Ourisson: Anaerobische Cyclisierung von Squalen-2,3-epoxyd zu Cycloartenol in Gewebekulturen von Nicotiana tabacum L. Eur. J. Biochem. 8, 180 (1969).Google Scholar
  82. 82.
    Erickson, R. E., C. H. Schunk, N. R. Trenner, B. H. Arison, and K. Folkers: Coenzyme Q. XL The structure of solanesol. J. Amer. Chem. Soc. 81, 4999 (1959).Google Scholar
  83. 83.
    Etoh, H., K. Ina, and M. Iguchi: Photosensitized oxygenation of α-pyran derived from β-ionone. Agr. Biol. Chem. 37, 2241 (1973).Google Scholar
  84. 84.
    Feeney, J., and F. W. Hemming: Nuclear magnetic resonance spectrometry of naturally occurring polyprenols. Analyt. Biochem. 20, 1 (1967).Google Scholar
  85. 85.
    Fikensher, L. H.: Nicotine, an alkaloid in Erythroxylum coca. Pharm. Weekblad 93, 932 (1958).Google Scholar
  86. 86.
    Firn, R. D., and J. Friend: Enzymic production of the plant growth inhibitor xanthoxin. Planta 103, 263 (1972).Google Scholar
  87. 87.
    Flament, I., B. Willhalm, et M. Stoll: Recherches sur les arômes. Sur l’arôme du cacao. III. Helv. Chim. Acta 50, 2233 (1967).Google Scholar
  88. 88.
    Foote, C. S., and M. Brenner: Chemistry of singlet oxygen. VIII. An unusual allenic oxygenation product. Tetrahedron Letters 6041 (1968).Google Scholar
  89. 89.
    Frankenburg, W. G., and A. M. Gottscho: Nicotinic acid in processed cigar tobacco. Arch. Biochem. Biophys. 21, 247 (1949).Google Scholar
  90. 90.
    Frankenburg, W. G., and A. M. Gottscho: Myosmine in cigar tobacco. Arch. Biochem. Biophys. 23, 333 (1949).Google Scholar
  91. 91.
    Frankenburg, W. G., and A. M. Gottscho: The chemistry of tobacco fermentation. I. Conversion of the alkaloids. B. The formation of oxynicotine. J. Amer. Chem. Soc. 77, 5728 (1955).Google Scholar
  92. 92.
    Frankenburg, W. G., A. M. Gottscho, E. W. Mayaud, and T.-C. Tso: The chemistry of tobacco fermentation: I. Conversion of the alkaloids. A. The formation of 3-pyridyl methyl ketone and of 2,3′-dipyridyl. J. Amer. Chem. Soc. 74, 4309 (1952).Google Scholar
  93. 93.
    Frankenburg, W. G., A. M. Gottscho, and A. A. Vaitekunas: Biochemical conversions of some tobacco alkaloids. Tob. Sci. 2, 9 (1958).Google Scholar
  94. 94.
    Frankenburg, W. G., A. M. Gottscho, A. A. Vaitekunas, and R. M. Zacharius: The chemistry of tobacco fermentation. I. Conversion of the alkaloids. C. The formation of 3-pyridyl propyl ketone, nicotinamide and N-methylnicotinamide. J. Amer. Chem. Soc. 77, 5730 (1955).Google Scholar
  95. 95.
    Frankenburg, W. G., and A. A. Vaitekunas: Chemical studies on nicotine degradation by microorganisms derived from the surface of tobacco seeds. Arch. Biochem. Biophys. 58, 509 (1955).Google Scholar
  96. 96.
    Frankenburg, W. G., and A. A. Vaitekunas: The chemistry of tobacco fermentation. I. Conversion of the alkaloids. D. Identification of cotinine in fermented leaves. J. Amer. Chem. Soc. 79, 149 (1957).Google Scholar
  97. 97.
    Fredrickson, J. D.: ß-Amyrenyl esters of tobacco. 20th Tobacco Chemists’ Research Conference, Winston-Salem, N. C., 1966.Google Scholar
  98. 98.
    Fujimori, T., R. Kasuga, H. Kaneko, and M. Noguchi: Isolation of 3-(4,8,12-trimethyl-tridecyl)-furan (“Phytofuran”) from Burley tobacco. Agr. Biol. Chem. 38, 2293 (1974).Google Scholar
  99. 99.
    Fujimori, T., R. Kasuga, H. Kaneko, and M. Noguchi: A new acetylenic diol, 3-hydroxy-7,8-dehydro-β-ionol from Burley Nicotiana tabacum L. Phytochem. 14, 2095 (1975).Google Scholar
  100. 100.
    Fujimori, T., R. Kasuga, M. Noguchi, and H. Kaneko: Isolation of R-(—)-3-hydroxy-β-ionone from Burley tobacco. Agr. Biol. Chem. 38, 891 (1974).Google Scholar
  101. 101.
    Fukuzumi, T., H. Kaneko, and H. Takahara: Studies on the chemical constituents of tobacco leaves. III. Isolation of (—)-2-isopropyl-5-oxo-hexanoic acid from Turkish tobacco leaves and absolute configuration of solanone. Agr. Biol. Chem. 31, 607 (1967).Google Scholar
  102. 102.
    Fukuzumi, T., H. Takahara, H. Kaneko, and I. Onishi: Isolation of hydroxy acids from Turkish tobacco leaves. Agr. Biol. Chem. 29, 967 (1965).Google Scholar
  103. 103.
    Fukuzumi, T., H. Takahara, H. Kaneko, and I. Onishi: Isolation of 2-isopropylmalic acid from Turkish tobacco. Nippon Nogeikagaku Kaisha 39, 204 (1965).Google Scholar
  104. 104.
    Gherna, R. L., S. H. Richardson, and S. C. Rittenberg: The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J. Biol. Chem. 240, 3669 (1965).Google Scholar
  105. 105.
    Gilbertson, T. J.: Biosynthesis of the piperidine nucleus: metabolism of D- and L-lysine-2-14C by Nicotiana glauca. Phytochem. 11, 1737 (1972).Google Scholar
  106. 106.
    Giles, J. A., and J. N. Schumacher: Turkish tobacco — I. Isolation and characterization of α-and α-levantenolide. Tetrahedron 14, 246 (1961).Google Scholar
  107. 107.
    Giles, J. A., J. N. Schumacher, S. S. Mims, and E. Bernasek: Turkish tobacco — II. Isolation and characterization of 12α-hydroxy-13-epimanoyloxide. Tetrahedron 18, 169 (1962).Google Scholar
  108. 108.
    Giles, J. A., J. N. Schumacher, and G. W. Young: Turkish tobacco — III. Isolation and characterization of α2-levantanolide. Tetrahedron 19, 107 (1963).Google Scholar
  109. 109.
    Gloger, M., und K. Decker: Zum Mechanismus der Induktion nikotinabbauender Enzyme in Arthrobacter oxydans. Zeitschrift Naturforsch. 24B, 1016 (1969).Google Scholar
  110. 110.
    Goldman, I. M., J. Seibl, I. Flament, F. Gautschi, M. Winter, B. Willhalm, et M. Stoll: Recherches sur les arômes. Sur l’arôme de café. II Pyrazines et pyridines. Helv. Chim. Acta 50, 694 (1967).Google Scholar
  111. 111.
    Gray, J. G., S. D. Kung, S. G. Wildman, and S. J. Sheen: Origin of Nicotiana tabacum L., detected by polypeptide composition of fraction I protein. Nature 252, 226 (1974).Google Scholar
  112. 112.
    Gries, F. A., K. Decker, und M. Brühmüller: Über den Abbau des Nikotins durch Bakterienenzyme. V. Abbau des L-6-Hydroxy-Nicotins zu [γ-Methylaminopropyl]-[6-hydroxy-pyridyl-(3)]-keton. Hoppe Seylers Z. Physiol. Chem. 325, 229 (1961).Google Scholar
  113. 113.
    Griffiths, W. T., D. R. Threlfall, and T. W. Goodwin: Observations on the nature and biosynthesis of terpenoid quinones and related compounds in tobacco shoots. Eur. J.Biochem. 5, 124 (1968).Google Scholar
  114. 114.
    Grunwald, C: Phytosterols in tobacco leaves at various stages of physiological maturity. Phytochem. 14, 79 (1975).Google Scholar
  115. 115.
    Gupta, R. N., and I. D. Spenser: Biosynthesis of the piperidine nucleus: the occurrence of two pathways from lysine. Phytochem. 9, 2329 (1970).Google Scholar
  116. 116.
    Gutcho, S.: Tobacco flavoring substances and methods 1972. Noyes Data Corp. U.S.A., pp. 65, 66.Google Scholar
  117. 117.
    Haines, P. G., and A. Eisner: Identification of pseudooxynicotine and its conversion to N-methylmyosmine. J. Amer. Chem. Soc. 72, 1719 (1950).Google Scholar
  118. 118.
    Hewlins, M. J. E., J. D. Ehrhardt, L. Hirth, and G. Ourisson: Conversion of [14C]-cycloartenol and [14C]-lanosterol into phytosterols by cultures of Nicotiana tabacum. Eur. J. Biochem. 8, 184 (1969).Google Scholar
  119. 119.
    Hlubucek, J. R., A. J. Aasen, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 21. Three new volatile tobacco constituents of probable isoprenoid origin. Acta Chem. Scand. 27, 2232 (1973).Google Scholar
  120. 120.
    Hlubucek, J. R., A. J. Aasen, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 22. Structures and synthesis of a nor-and a seco-terpenoid of the drimane series isolated from tobacco. Acta Chem. Scand. B28, 18 (1974).Google Scholar
  121. 121.
    Tobacco chemistry 26. Synthesis of 14, 15-bisnor-8-hydroxylabd-11E-en-13-one, a new tobacco constituent. Acta Chem. Scand. B28, 131 (1974).Google Scholar
  122. 122.
    Hlubucek, J. R., A. J. Aasen, S.-O. Almqvist, and C. R. Enzell: Tobacco chemistry 25. Two new drimane sesquiterpene alcohols from Greek Nicotiana tabacum L. Acta Chem. Scand. B28, 289 (1974).Google Scholar
  123. 123.
    Hlubucek, J. R., A. J. Aasen, B. Kimland, and C. R. Enzell: New volatile constituents of Greek Nicotiana tabacum. Phytochem. 12, 2555 (1973).Google Scholar
  124. 124.
    Hochstein, L. I., and S. C. Rittenberg: Bacterial oxidation of nicotine. II. Isolation of the first oxidative product and its identification as (l)-6-hydroxynicotine. J. Biol. Chem. 234, 156 (1959).Google Scholar
  125. 125.
    Bacterial oxidation of nicotine. Iii. Isolation and identification of 6-hydroxy-pseudooxynicotine. J. Biol. Chem. 235, 795 (1960).Google Scholar
  126. 126.
    Hoffman, D., S. S. Hecht, R. M. Ornaf, and E. L. Wynder: ITN’-nitrosonornicotine in tobacco. Science 186, 265 (1974).Google Scholar
  127. 127.
    Holmes, P. E., S. C. Rittenberg, and H. J. Knackmuss: The bacterial oxidation of nicotine. Synthesis of 2,3,6-trihydroxypyridine and accumulation and partial characterization of the product of 2,6-dihydroxypyridine oxidation. J. Biol. Chem. 247, 7628 (1972).Google Scholar
  128. 128.
    Hu, M. W., W. E. Bodinell, and D. Hoffmann: Chemical studies on tobacco smoke. XXIII. Synthesis of carbon-14 labelled myosmine, nornicotine and N’-nitro-sonornicotine. J. Label. Compounds 10, 79 (1974).Google Scholar
  129. 129.
    Huber, C.: Vorläufige Notiz über einige Derivate des Nikotins. Liebigs Ann. Chem. 141, 271 (1867).Google Scholar
  130. 130.
    Huber, C.: Vorläufige Mitteilung. Chem. Ber. 3, 849 (1870).Google Scholar
  131. 131.
    Hudson, C. S., and A. Neuberger: The stereochemical formulas of the hydroxy-proline and allohydroxyproline enantiomorphs and some related substances. J. Organ. Chem. 15, 24 (1950).Google Scholar
  132. 132.
    Il’in, G. S.: The interrelationship among the chief tobacco alkaloids. Biokhimiya (USSR) 13, 193 (1948).Google Scholar
  133. 133.
    Irvine, W. J., and M. J. Saxby: Steam volatile amines of Latakia tobacco leaf. Phytochem. 8, 473 (1969).Google Scholar
  134. 134.
    Isoe, S., S. B. Hyeon, S. Katsumura, and T. Sakan: Photo-oxygenation of caro-tenoids. II. The absolute configuration of loliolide and dihydroactinidiolide. Tetrahedron Letters 2517 (1972).Google Scholar
  135. 735.
    Isoe, S., S. B. Hyeon, and T. Sakan: Photo-oxygenation of carotenoids. I. The formation of dihydroactinidiolide and β-ionone from β-carotene. Tetrahedron Letters 279 (1969).Google Scholar
  136. 136.
    Isoe, S., S. Katsumura, S. B. Hyeon, and T. Sakan: Biogenetic type synthesis of grasshopper ketone and loliolide and a possible biogenesis of allenic carotenoids. Tetrahedron Letters 1089 (1971).Google Scholar
  137. 137.
    Isoe, S., S. Katsumura, and T. Sakan: The synthesis of damascenone and β-damascone and the possible mechanism of their formation from carotenoids. Helv. Chim. Acta 56, 1514 (1973).Google Scholar
  138. 138.
    Johnson, R. R., and J. A. Nicholson: The structure, chemistry and synthesis of solanone — anomalous terpenoid ketone from tobacco. J. Organ. Chem. 30, 2918 (1965).Google Scholar
  139. 139.
    Kallianos, A. G., and R. E. Means: Isoprenoid ketones in tobacco. CORESTA/ TCRC joint conference, Williamsburg, Va., Oct. 22–28, 1972. Abstr. 13, Coresta Information Bulletin 1972.Google Scholar
  140. 140.
    Kallianos, A. G., F. A. Shelburne, R. E. Means, R. K. Stevens, R. E. Lax, and J. D. Mold: Identification of the D-glucosides of stigmasterol, sitosterol and campesterol in tobacco and cigarette smoke. Biochem. J. 87, 596 (1963).Google Scholar
  141. 141.
    Kaneko, H.: The aroma of cigar tobacco. Part II. Isolation of norambreinolide from cigar tobacco. Agr. Biol. Chem. 35, 1461 (1971).Google Scholar
  142. 142.
    Kaneko, H., and M. Harada: 4-Hydroxy-β-damascone and 4-hydroxy-dihydro-β-damascone from cigar tobacco. Agr. Biol. Chem. 36, 168 (1972).Google Scholar
  143. 143.
    Aroma of cigar tobacco. III. Isolation and synthesis of R-(+)-3-isopropyl-5-hydroxypentanoic acid lactone. Agr. Biol. Chem. 36, 658 (1972).Google Scholar
  144. 144.
    Kaneko, H., and K. Hosfflmo: Isolation from cigar tobacco leaves of tetrahydro-actinidiolide (2-hydroxy-2,6,6-trimethylcyclohexyl acetic acid γ-lactone). Agr. Biol. Chem. 33, 969 (1969).Google Scholar
  145. 145.
    Kaneko, H., and K. Ijichi: The aroma of cigar tobacco. Part I. Isolation of 2-hydroxy-2,6,6-trimethylcyclohexylidene-l-acetic acid lactone (dihydroactinidiolide) from ether extract of cigar leaves. Agr. Biol. Chem. 32, 1337 (1968).Google Scholar
  146. 146.
    Karrer, P., und R. Widmer: Konfiguration des Nikotins. Optisch aktive Hygrin-säure. Helv. Chim. Acta 8, 364 (1925).Google Scholar
  147. 147.
    Kato, T., M. Tanemura, T. Suzuki, and Y. Kitahara: Biogenetic-type synthesis of α-and β-levantenolides. Chem. Commun. 28 (1970).Google Scholar
  148. 148.
    Kearns, D. R.: Physical and chemical properties of singlet molecular oxygen. Chem. Rev. 71, 395 (1971).Google Scholar
  149. 149.
    Kimland, B., A. J. Aasen, S.-O. Almqvist, P. Arpino, and C. R. Enzell: Tobacco chemistry 16. Volatile acids of sun-cured Greek tobacco. Phytochem. 12, 835 (1973).Google Scholar
  150. 150.
    Kimland, B., A. J. Aasen, and C. R. Enzell: Tobacco chemistry 12. Volatile neutral constituents of Greek tobacco. Acta Chem. Scand. 26, 1281 (1972).Google Scholar
  151. 151.
    Kimland, B., A. J. Aasen, and C. R. Enzell: Tobacco chemistry 10. Volatile neutral constituents of Greek tobacco. Acta Chem. Scand. 26, 2177 (1972).Google Scholar
  152. 152.
    Kimland, B., R. A. Ajppleton, A. J. Aasen, J. Roeraade, and C. R. Enzell: Tobacco Chemistry 6. Neutral oxygen-containing volatile constituents of Greek tobacco. Phytochem. 11, 309 (1972).Google Scholar
  153. 153.
    Kinzer, G. W., T. F. Page, and R. R. Johnson: Structure of two solanone precursors from tobacco. J. Organ. Chem. 31, 1797 (1966).Google Scholar
  154. 154.
    Kisaki, T., S. Mizusaki, and E. Tamaki: γ-Methylaminobutyraldehyde, a new intermediate in nicotine biosynthesis. Arch. Biochem. Biophys. 117, 677 (1966).Google Scholar
  155. 155.
    Kisaki, T., S. Mizusaki, and E. Tamaki: Phytochemical studies on tobacco alkaloids. XL A new alkaloid in Nicotiana tabacum roots. Phytochem. 7, 323 (1968).Google Scholar
  156. 156.
    Kisaki, T., and E. Tamaki: Phytochemical studies on the tobacco alkaloids. I. Optical rotatory power of nicotine. Arch. Biochem. Biophys. 92, 351 (1961).Google Scholar
  157. 157.
    Phytochemical studies of the tobacco alkaloids. III. Observations on the interconversion of dl-nicotine and dl-nornicotine in excised tobacco leaves. Arch. Biochem. Biophys. 94, 252 (1961).Google Scholar
  158. 158.
    Phytochemical studies on the tobacco alkaloids. X. Degradation of the tobacco alkaloids and their optical rotatory changes in tobacco plants. Phytochem. 5, 293 (1966).Google Scholar
  159. 159.
    Kobayashi, H., and S. Akiyoshi: Thunbergene, a macrocyclic diterpene. Bull. Chem. Soc. Japan 35, 1044 (1962).Google Scholar
  160. 160.
    Terpenoids. VI. Structure of thunbergene. Bull. Chem. Soc. Japan 36, 823 (1963).Google Scholar
  161. 161.
    Koehler, P. E., M. E. Mason, and J. A. Newell: Formation of pyrazine compounds in sugar-amino acid model systems. J. Agric. Food Chem. 17, 393 (1969).Google Scholar
  162. 162.
    Koehler, P. E., and G. V. Odell: Factors affecting the formation of pyrazine compounds in sugar-amine reactions. J. Agric. Food Chem. 18, 895 (1970).Google Scholar
  163. 163.
    Kofler, M., A. Langemann, R. Rü Egg, U. Gloor, U. Schwieter, J. Wü Rsch, O. Wiss, und O. Isler: Struktur und Partialsynthese des pflanzlichen Chinons mit isoprenoider Seitenkette. Helv. Chim. Acta 42, 2252(1959).Google Scholar
  164. 164.
    Korte, F., und H.-J. Schulze-Steinen: Acyl-lacton-Umlagerung XXII. Umlagerung von α-Aroyl-pyrrolidonen in konz. Salzsäure zu Pyrrollinderivaten. Chem. Ber. 95, 2444 (1962).Google Scholar
  165. 165.
    Kuffner, F., and N. Faderl: Constitution of nicotelline. Monatsh. Chem. 87, 71 (1956).Google Scholar
  166. 166.
    Kurata, S., Y. Inouye, and H. Kakisawa: Synthesis of dihydroactinidiolide and a trimethyloctalenedione. Tetrahedron Letters 5153 (1973).Google Scholar
  167. 167.
    Leete, E.: The biogenesis of nicotine. Chem. and Ind. 537 (1955).Google Scholar
  168. 168.
    Leete, E.: The biogenesis of nicotine and anabasine. J. Amer. Chem. Soc. 78, 3520 (1956).Google Scholar
  169. 169.
    Leete, E.: The biogenesis of nicotine. V. New precursors of the pyrrolidine ring. J. Amer. Chem. Soc. 80, 2162 (1958).Google Scholar
  170. 170.
    Leete, E.: Biosynthesis of the Nicotiana alkaloids. XI. Investigation of tautomerism in N-methyl-Δ1-pyrrolinium chloride and its incorporation into nicotine. J. Amer. Chem. Soc. 89, 7081 (1967).Google Scholar
  171. 171.
    Leete, E.: Biosynthesis of the Nicotiana alkaloids. XIV. The incorporation of Δ1-piperideine-6-14C into the piperidine ring of anabasine. J. Amer. Chem. Soc. 91, 1697 (1969).Google Scholar
  172. 172.
    Leete, E.: Biomimetic synthesis of nicotine. J. Chem. Soc. Chem. Commun. 1091 (1972).Google Scholar
  173. 173.
    Leete, E.: Biosynthesis and metabolism of the tobacco alkaloids. Proceedings of the First Philip Morris Science Symposium, 1973.Google Scholar
  174. 174.
    Leete, E.: Biosynthesis of anatabine and anabasine in Nicotiana glutinosa. J. Chem. Soc. Chem. Commun. 9 (1975).Google Scholar
  175. 175.
    Leete, E., and V. M. Bell: The biogenesis of the Nicotiana alkaloids. VIII. The metabolism of nicotine in N. tabacum. J. Amer. Chem. Soc. 81, 4358 (1959).Google Scholar
  176. 176.
    Leete, E., and M. R. Chedekel: The aberrant formation of (—)-N-methylanabasine from N-methyl-Δ1piperideinium chloride in Nicotiana tabacum and N. glauca. Phytochem. 11, 2751 (1972).Google Scholar
  177. 177.
    Leete, E., and M. R. Chedekel: Metabolism of nicotine in Nicotiana glauca. Phytochem. 13, 1853 (1974).Google Scholar
  178. 178.
    Leete, E., M. R. Chedekel, and G. B. Bodem: Synthesis of myosmine and nor-nicotine using an acyl carbanion equivalent as an intermediate. J. Organ. Chem. 37, 4465 (1972).Google Scholar
  179. 179.
    Leete, E., E. G. Gros, and T. J. Gilbertson: The biosynthesis of anabasine. Origin of the nitrogen of the piperidine ring. J. Amer. Chem. Soc. 86, 3907 (1964).Google Scholar
  180. 180.
    Biosynthesis of the pyrrolidine ring of nicotine — feeding experiments with 15 N-labelled ornithine-2-14C. Tetrahedron Letters 587 (1964).Google Scholar
  181. 181.
    Leete, E., and Y.-Y. Liu: Metabolism of [2-3H]-and [6-3H]-nicotinic acid in intact Nicotiana tabacum plants. Phytochem. 12, 593 (1973).Google Scholar
  182. 182.
    Lloyd, R. A., C. W. Miller, D. L. Roberts, J. A. Giles, J. P. Dickerson, N. H. Nelson, C. E. Rix, and P. H. Ayers: Flue-cured tobacco flavor. I. Essence and essential oil components. Tob. Sci. 20, 43 (1976).Google Scholar
  183. 183.
    Lupukás, R., A. A. Arojan, J. Kupovář, und K. Bupláha: Zur Konfiguration stickstoffhaltiger Verbindungen XV. Bestimmung der absoluten Konfiguration von Anabasin und Anatabin. Coll. Czech. Chem. Commun. 27, 751 (1962).Google Scholar
  184. 184.
    Manske, R. H. F., and L. Marion: The alkaloids of Lycopodium species. I. Lyco-podium complanatum L. Can. J. Res. B. 20, 87 (194Google Scholar
  185. 185.
    Manske, R. H. F., and L. Marion: Alkaloids of Lycopodium species. VII. Lycopodium lucidulum. Can. J. Res. B. 24, 57 (1946).Google Scholar
  186. 186.
    Marion, L.: The occurrence of L-nicotine in Asclepias syriaca. Can. J. Res. B. 17, 21 (1939).Google Scholar
  187. 187.
    Marion, L.: The alkaloids of Sedum acre. Can. J. Res. B. 23, 165 (1945).Google Scholar
  188. 188.
    Marion, L., and R. H. F. Manske: Alkaloids of Lycopodium species. IV. Lycopodium tristachyum Pursh. Can. J. Res. B. 22, 1 (1944).Google Scholar
  189. 189.
    Marion, L., and R. H. F. Manske: Alkaloids of Lycopodium species. VI. Lycopodium clavatum. Can. J. Res. B 22, 137 (1944).Google Scholar
  190. 190.
    Marion, L., and R. H. F. Manske: Alkaloids of Lycopodium species. VIII. Lycopodium sabinaefolium. Can. J. Res. B 24, 63 (1946).Google Scholar
  191. 191.
    Marion, J. P., F. Müggler-Chavan, R. Viani, J. Bricout, D. Reymond, et R. H. Egli: Sur la composition de l’arôme de cacao. Helv. Chim. Acta 50, 1509 (1967).Google Scholar
  192. 192.
    Mckennis, H., E. R. Bowman, L. D. Quin, and R. C. Denney: Structure of dibromoticonine, a bromination product of nicotine. J. Chem. Soc. Perkin I, 2046 (1973).Google Scholar
  193. 193.
    Milborrow, B. V.: Biosynthesis of abscisic acid by a cell-free system. Phytochem. 13, 131 (1974).Google Scholar
  194. 194.
    Milborrow, B. V.: The stereochemistry of cyclization in abscisic acid. Phytochem. 14, 123 (1975).Google Scholar
  195. 195.
    Mizusaki, S., Y. Tanabe, M. Noguchi, and E. Tamaki: Phytochemical studies on tobacco alkaloids. XIV. The occurrence and properties of putrescine N-methyltrans-ferase in tobacco roots. Plant Cell Physiol. 12, 633 (1971).Google Scholar
  196. 196.
    Mizusaki, S., Y. Tanabe, M. Noguchi, and E. Tamaki: N-Methylputrescine oxidase from tobacco roots. Phytochem. 11, 2757 (1972).Google Scholar
  197. 197.
    Mori, K.: Synthesis of the optically active dehydrovomifoliol. A synthetic proof of the absolute configuration of (+)-abscisic acid. Tetrahedron Letters 2635 (1973).Google Scholar
  198. 198.
    Mousseron-Canet, M., J.-P. Dalle, et J.-C. Mani: Photooxydation sensibilisée de composes apparentes aux carotenoides. Analogie avec la structure des carotenoides oxygenes, alleniques et autres. Tetrahedron Letters 6037 (1968).Google Scholar
  199. 199.
    Mundy, B. P., and B. R. Larsen: A new approach to pyrrolidine and piperidine alkaloids. Synthetic Commun. 2, 197 (1972).Google Scholar
  200. 200.
    Mundy, B. P., B. R. Larsen, L. F. Mckenzie, and G. Braden: A convenient synthesis of myosmine. J. Organ. Chem. 37, 1635 (1972).Google Scholar
  201. 201.
    Nathan, R. A., and A. H. Adelman: Photosensitized generation of singlet molecular oxygen with near-infrared radiation. Chem. Commun. 674 (1974).Google Scholar
  202. 202.
    Neurath, G., und M. Dünger: Isolierung schwach basischer Heteroaromaten aus dem Tabakrauch. Beitr. Tabakforsch. 5, 1 (1969).Google Scholar
  203. 203.
    Neurath, G., A. Krull, B. Pirmann, und K. Wandrey: Untersuchung der flüchtigen Basen des Tabaks, II. Beitr. Tabakforsch. 3, 571 (1966).Google Scholar
  204. 204.
    Newell, J. A., M. E. Mason, and R. S. Matlock: Precursors of typical and atypical roasted peanut flavour. J. Agric. Food Chem. 15, 767 (1967).Google Scholar
  205. 205.
    Noga, E.: Über die Alkaloide im Tabakextrakt. Fachl. Mitt. Österr. Tabak-Regie I (1914).Google Scholar
  206. 206.
    Ohloff, G.: Classification and genesis of food flavours. Flavour Industry 501 (1972).Google Scholar
  207. 207.
    Ohloff, G., D. Rautenstrauch, und K. H. Schulte-Elte: Modellreaktionen zur Biosynthese von Verbindungen der Damascon-Reihe und ihre präparative Anwendung. Helv. Chim. Acta 56, 1503 (1973).Google Scholar
  208. 208.
    Onishi, I., H. Tomita, and T. Fukuzumi: Essential oils of tobacco leaves. IV. Neutral fraction. Bull. Agr. Chem. Soc. Japan 20, 61 (1956).Google Scholar
  209. 209.
    Oreykov, A., und G. Menshikov: Über die Alkaloide von Anabasis aphylla L. (I. Mitteilung.) Chem. Ber. 64, 266 (1931).Google Scholar
  210. 210.
    Pack, A. B.: The curing and quality of flue-cured tobacco: the effect of certain cultural and curing practices on the plastid pigment and carbohydrate contents. N. C. State College, Ph. D. Thesis 1950 (unpublished), from WEYBREW, J. A., Tob. Sci. 1, 1 (1957).Google Scholar
  211. 211.
    Paris, R. R., et P. Frigot: Étude par Chromatographie et par electrophorèse des alcaloïdes de diverse Crassulacceés indigènes; caractérisation de la nicotine chez le Sempervivum araenoideum. C. R. Acad. Sci. 248, 1849 (1959).Google Scholar
  212. 212.
    Pelletier, S. W., S. Lajsic, Y. Ohtsuka, and Z. Djarmati: Naturally occurring terpenes. Synthesis of (+)-and (±)-14,15-bisnor-8α-hydroxylabd-11(E)-en-13-one, (+)-drimane-8, 11-diol, and (-)-drimenol. J. Organ. Chem. 40, 1607 (1975).Google Scholar
  213. 213.
    Pictet, A., und G. Court: Über einige neue Pflanzenalkaloide. Chem. Ber. 40, 3771 (1907).Google Scholar
  214. 214.
    Pictet, A., und P. Crépieux: Über Phenyl-und Pyridylpyrrole und die Constitution des Nicotins. Chem. Ber. 28, 1904 (1895).Google Scholar
  215. 215.
    Pictet, A., und A. Rotschy: Über neue Alkaloide des Tabaks. Chem. Ber. 34, 696 (1901).Google Scholar
  216. 216.
    Pinner, A: Über Nicotin. (I. Mitteilung.) Arch. Pharmaz. 231, 378 (1893).Google Scholar
  217. 217.
    Pinner, A: Über Nikotin (Metanicotin). VIL Mitteilung. Chem. Ber. 27, 1053 (1894).Google Scholar
  218. 218.
    Pinner, A., und RÖWER: Über Nicotin. Die Konstitution des Alkaloids. Chem. Ber. 26, 292 (1893).Google Scholar
  219. 219.
    Poindexter, E. H., and R. D. Carpenter: The isolation of harmane and norharmane from tobacco and cigarette smoke. Phytochem. 1, 215 (1962).Google Scholar
  220. 220.
    Posselt, W., und L. Reimann: Chemische Untersuchung des Tabaks und Darstellung eines eigentümlichen wirksamen Prinzips dieser Pflanze. Geigers Mag. Pharmac. 24, 138 (1828).Google Scholar
  221. 221.
    Quan, P. M., T. K. B. Karns, and L. D. Quin: Total synthesis of dl-anatabine. Chem. and Ind. 1553 (1964).Google Scholar
  222. 222.
    Ramamurthy, V., and R. S. H. Liu: Photochemistry of dehydro-β-ionone and related compounds. Tetrahedron Letters 441 (1973).Google Scholar
  223. 223.
    Rayburn, C. H., W. R. Harlan, and H. R. Hanmer: Rearrangement of nicotine oxide. J. Amer. Chem. Soc. 72, 1721 (1950).Google Scholar
  224. 224.
    Reid, W. W.: The action of inhibitors on the incorporation of [2-14C]-mevalonate into the triterpenes and sterols of Nicotiana tabacum. Biochem. J. 100, 13P (1966).Google Scholar
  225. 225.
    Reid, W. W.: The phytochemistry of the genus Nicotiana. Ann. du Tabac S.E.I.T.A. 2, 145 (1974).Google Scholar
  226. 226.
    Ribas-Scmuparqués, I, y Y. A. Nodar Blanco: Alcaloides de las Papilionaceas XXXIX. Configuration absoluta de adenocarpina, santiaquina, ammodendrina, anabasina, anatabina y de sus metil-derivados. Configuraciôn absoluta parcial del a,β’-dipiperi-dilo. Soc. Espan. Fis. Quim. 57, 781 (1961).Google Scholar
  227. 227.
    Richardson, B., J. R. Baur, R. S. Halliwell, and R. Langston: Sterol metabolism in normal and tobacco mosaic virus infected tobacco plants. Steroids 11, 231 (1968).Google Scholar
  228. 228.
    Richardson, S. H., and S. C. Rittenberg: Bacterial oxidation of nicotine. IV. Isolation and identification of 2,6-dihydroxy-N-methylmyosmine. J. Biol. Chem. 236, 959 (1961).Google Scholar
  229. 229.
    Bacterial oxidation of nicotine. V. Identification of 2,6-dihydroxypseudooxy-nicotine as the third oxidative product. J. Biol. Chem. 236, 964 (1961).Google Scholar
  230. 230.
    Roberts, D. L.: Tobacco. U.S. Patent 3, 217, 717; November 16, 1965.Google Scholar
  231. 231.
    Roberts, D. L.: The structure of a new sesquiterpene isolated from tobacco. Phytochem. 11, 2077 (1972).Google Scholar
  232. 232.
    Roberts, D. L., R. A. Heckman, B. P. Hege, and S. A. Bellin: Synthesis of (R,S)-abscisic acid. J. Organ. Chem. 33, 3566 (1968).Google Scholar
  233. 233.
    Roberts, D. L., C. W. Miller, and R. A. Lloyd, Jr.: Tobacco carotenoids. 27th Tobacco Chemist’s Research Conference, Winston-Salem, N. C, October 3–5, 1973.Google Scholar
  234. 234.
    Roberts, D. L., and W. A. Rohde: Isolation and identification of flavour components of Burley tobacco. Tob. Sci. 16, 107 (1972).Google Scholar
  235. 235.
    Roberts, D. L., and R. L. Rowland: Macrocyclic diterpenes. a-and β-4,8,13-duvatriene-l,3-diols from tobacco. J. Organ. Chem. 27, 3989 (1962).Google Scholar
  236. 236.
    Roberts, D. L., and J. N. Schumacher: Tobacco. U. S. Patent No. 3, 217, 716. November 16, 1965.Google Scholar
  237. 237.
    Rowland, R. L.: Flue-cured tobacco. IL Neophytadiene. J. Amer. Chem. Soc. 79, 5007 (1957).Google Scholar
  238. 238.
    Rowland, R. L.: Flue-cured tobacco. III. Solanachromene and α-tocopherol. J. Amer. Chem. Soc. 80, 6130 (1958).Google Scholar
  239. 239.
    Rowland, R. L., and J. A. Giles: Flue-cured tobacco. V. Polyisoprenoid compounds. Tob. Sci. 4, 29 (1960).Google Scholar
  240. 240.
    Rowland, R. L., and P. H. Latimer: Flue-cured tobacco. IV. Isolation of solanesyl esters. Tob. Sci. 3, 1 (1959).Google Scholar
  241. 241.
    Rowland, R. L., P. H. Latimer, and J. A. Giles: Flue-cured tobacco. I. Isolation of solanesol, an unsaturated alcohol. J. Amer. Chem. Soc. 78, 4680 (1956).Google Scholar
  242. 242.
    Rowland, R. L., and D. L. Roberts: Macrocyclic diterpenes isolated from tobacco, α-and β-4,8,13-Duvatriene-l,5-diols. J. Organ. Chem. 28, 1165 (1963).Google Scholar
  243. 243.
    Rowland, R. L., A. Rodgman, J. N. Schumacher, D. L. Roberts, L. C. Cook, and W. E. Walker, Jr.: Macrocyclic diterpene hydroxyethers from tobacco and cigarette smoke. J. Organ. Chem. 29, 16 (1964).Google Scholar
  244. 244.
    Rüegg, R., U. Gloor, A. Langemann, M. Kofler, C. Von Planta, G. Ryser, and O. Isler: Total synthesis of solanesol. Helv. Chim. Acta 43, 1745 (1960).Google Scholar
  245. 245.
    Sabetay, S., L. Trabaud, and H. F. Emmanuel: Constituents of the concrete oil of tobacco leaves (Nicotiana tabacum). Comp. rend. 213, 321 (1941).Google Scholar
  246. 246.
    Sanderson, G. W., H. Co, and J. G. Gonzalez: Biochemistry of tea fermentation: the role of carotenes in black tea aroma formation. J. Food Sci. 36, 231 (1971).Google Scholar
  247. 247.
    Schenk, H. R., H. Gutmann, O. Jeger, und L. Ruzicka: Zur Kenntnis der Diterpene, XLII. Über eine neue, ergiebige Partialsynthese des Ambreinolides. Helv. Chim. Acta 35, 817 (1952).Google Scholar
  248. 248.
    Schmeltz, L, R. L. Miller, and R. L. Stedman: Gas Chromatographic study of the steam-volatile fatty acids of various tobaccos. J. Gas Chromatog. 1, 27 (1963).Google Scholar
  249. 249.
    Schmeltz, I., R. L. Stedman, and R. L. Miller: Composition studies on tobacco. XVI. Steam-volatile acids. J. Assoc. Offic. Agr. Chemists 46, 779 (1963).Google Scholar
  250. 250.
    Schulte-Elte, K. H., M. Gadola, und G. Ohloff: Oxydative Umsetzungen in der Damascon-Reihe. 1ΔgO2-und SeO2-Oxydation von β-Damascenon. Helv. Chim. Acta 56, 2028 (1973).Google Scholar
  251. 251.
    Schulte-Elte, K. H., B. L. Müller, und G. Ohloff: Die farbstoffsensibilisierte Photo-Oxygenierung von β-Damascol. Ein einfaches Verfahren zur Darstellung von β-Damascenon. Helv. Chim. Acta 54, 1899 (1971).Google Scholar
  252. 252.
    Schumacher, J. N., and R. A. Heckman: On the natural occurrence and relative configurations of the tetrahydroactinidiolide isomers. Phytochem. 10, 421 (1971).Google Scholar
  253. 253.
    Schumacher, J. N., and L. Vestal: Isolation and identification of some components of Turkish tobacco. Tob. Sci. 18, 43 (1974).Google Scholar
  254. 254.
    Supchütte, H. R., W. Maier, and K. Mothes: Methylputrescine as possible precursor of nicotine in Nicotiana rustica. Acta Biochem. Polon. 13, 401 (1966).Google Scholar
  255. 255.
    Schwieter, U., W. Arnold, W. E. Oberhänsli, N. Rigassi, und W. Vetter: Synthese in der Carotinoid-Reihe. Ein Beitrag zur Chromsäure-Oxydation von Polyenen. Helv. Chim. Acta 54, 2447 (1971).Google Scholar
  256. 256.
    Scott, T. A., and J. P. Glynn: The incorporation of [2,3,7-14C]-nicotinic acid into nicotine by Nicotiana tabacum. Phytochem. 6, 505 (1967).Google Scholar
  257. 257.
    Shigematsu, H., S. Shibata, T. Kurata, H. Kato, and M. Fujimaki: 5-Acetyl-2,3-dihydro-1 H-pyrrolizines and 5,6,7,8-tetrahydroindolizin-8-ones, odor constituents formed on heating L-proline with D-glucose. J. Agric. Food Chem. 23, 233 (1975).Google Scholar
  258. 258.
    Skorianetz, W., und G. Ohloff: Säurekatalysierte Umlagerung von trans-5,6-Di-hydroxy-5,6-dihydro-β-jonon. Helv. Chim. Acta 56, 2025 (1973).Google Scholar
  259. 259.
    Über vinyloge English-Zimmerman-Spaltungen in der Iononreihe. Helv. Chim. Acta 58, 771 (1975).Google Scholar
  260. 260.
    Skraup, ZD. H., und A. Cobenzl: Über α-und β-Naphthochinolin. Monatsh. Chem. 4, 459 (1883).Google Scholar
  261. 261.
    Smith, C. R.: Occurrence of anabasine in Nicotiana glauca R. Grah. (Solanaceae). J. Amer. Chem. Soc. 57, 959 (1935).Google Scholar
  262. 262.
    Smith, H. H., and C. R. Smith: Alkaloids in certain species and interspecific hybrids of Nicotiana. J. Agr. Res. 65, 347 (1942).Google Scholar
  263. 263.
    Solt, M. L., R. F. Dawson, and D. R. Christman: Biosynthesis of anabasine and of nicotine by excised root cultures of Nicotiana glauca. Plant. Physiol. 35, 887 (1960).Google Scholar
  264. 264.
    Springer, J. P., J. Clardy, R. H. Cox, H. G. Cutler, and R. J. Cole: The structure of a new type of plant growth inhibitor extracted from immature tobacco leaves. Tetrahedron Letters 2737 (1975).Google Scholar
  265. 265.
    Suppäth, E., und S. Biniecki: Tobacco Alkaloids. XVI. Af-Methylpyrrolidin, ein neues Tabak-Alkaloid und zur Konstitution des Iso-Nicoteins. Chem. Ber. 72, 1809 (1939).Google Scholar
  266. 266.
    Suppäth, E., und H. Bretschneider: Eine neue Synthese des Nicotins und einige Bemerkungen zu den Arbeiten NAGAIS über Ephedrine. Chem. Ber. 61, 327 (1928).Google Scholar
  267. 267.
    Suppäth, E., und F. Kesztler: L-Anatabin, ein neues Tabakalkaloid. (XL Mitteilung über Tabakbasen.) Chem. Ber. 70, 239 (1937).Google Scholar
  268. 268.
    Suppäth, E., und F. Kesztler: Über das Vorkommen von d,l-Nornicotin, d,l-Anatabin und l-Anabasin im Tabak. (XII. Mitteilung über Tabakalkaloide.) Chem. Ber. 70, 704 (1937).Google Scholar
  269. 269.
    Suppäth, E., und F. Kesztler: Über neue Basen des Tabaks. (XIII. Mitteilung über Tabakalkaloide.) Chem. Ber. 70, 2450 (1937).Google Scholar
  270. 270.
    Suppäth, E., und L. Mamoli: Synthese des Myosmins (VI. Mitteilung über Tabakbasen) und Bemerkungen zu einer Notiz von T. Reynolds und R. Robinson. Chem. Ber. 69, 757 (1936).Google Scholar
  271. 271.
    Suppäth, E., und L. Mamoli: Eine neue Synthese des d,l-Anabasins. (VII. Mitteilung über Tabakalkaloide.) Chem. Ber. 69, 1082 (1936).Google Scholar
  272. 272.
    Suppäth, E., J. P. Wibaut, und F. Kesztler: Über das N-Methylmyosmin. Chem. Ber. 71, 100 (1938).Google Scholar
  273. 273.
    Späth, E., und E. Zajic: Über neue Tabakalkaloide (VIII. Mitteilung über Tabakbasen) und Bemerkungen zur Kenntnis des Rhoeadins, des l-Peganins und des Ammoresinols. Chem. Ber. 69, 2448 (1936).Google Scholar
  274. 274.
    Steadman, J. R., and L. Sequeira: Abscisic acid in tobacco plants. Plant Physiol. 45, 691 (1970).Google Scholar
  275. 275.
    Stevens, K. L., R. Lundin, and D. L. Davis: Acid catalyzed rearrangement of β-ionone epoxide. Tetrahedron 31, 2749 (1975).Google Scholar
  276. 276.
    Stevens, M. A.: Relationship between polyene-carotene content and volatile compound composition of tomatoes. J. Amer. Soc. Horticult. Sci. 95, 461 (1970).Google Scholar
  277. 277.
    Stevenson, J., F. W. Hemming, and R. A. Morton: The intracellular distribution of solanesol and plastoquinone in green leaves of the tobacco plant. Biochem. J. 88, 52 (1963).Google Scholar
  278. 278.
    Stoll, M., et M. Hinder: Odeur et constitution VIII. Recherches sur quelques produits de dégradation du sclaréol. Helv. Chim. Acta 36, 1984 (1953).Google Scholar
  279. 279.
    Strain, H. H.: Leaf xanthophylls. Carnagie Inst. Wash., Publ. No. 490 (1938).Google Scholar
  280. 280.
    Strain, H. H.: Leaf xanthophylls. J. Amer. Chem. Soc. 70, 1672 (1948).Google Scholar
  281. 281.
    VAN Tamelen, E. E., and R. M. Coates: Biogenetic-type synthesis of (±)-farnesiferol A and (±)-farnesiferol C. Chem. Commun. 413 (1966).Google Scholar
  282. 282.
    VAN Tamelen, E. E., A. Storni, E. J. Hessler, and M. Schwartz: The biogenetically patterned in vitro oxidation-cyclization of farnesyl acetate. J. Amer. Chem. Soc. 85, 3295 (1963).Google Scholar
  283. 283.
    Tanemura, M., T. Suzuki, T. Kato, and Y. Kitahara: Synthesis of levantenolides from acyclic progenitor. Tetrahedron Letters 1463 (1970).Google Scholar
  284. 284.
    Thesing, J., und A. Müller: Synthese des Nicotellins. Angew. Chem. 68, 577 (1956).Google Scholar
  285. 285.
    Tso, T. C, and R. N. Jeffrey: Biochemical studies on tobacco alkaloids. I. The fate of labeled tobacco alkaloids supplied to Nicotiana plants. Arch. Biochem. Bio-phys. 80, 46 (1959).Google Scholar
  286. 286.
    Wada, E.: Microbial degradation of nornicotine. Arch. Biochem. Biophys. 64, 244 (1956).Google Scholar
  287. 287.
    Wada, E.: Microbial degradation of the tobacco alkaloids and some related compounds. Arch. Biochem. Biophys. 72, 145 (1957).Google Scholar
  288. 288.
    Wada, E., T. Kisaki, and K. Saito: Autooxidation of nicotine. Arch. Biochem. Biophys. 79, 124 (1959).Google Scholar
  289. 289.
    Wada, E., and K. Yamasaki: Degradation of nicotine by soil bacteria. J. Amer. Chem. Soc. 76, 155 (1954).Google Scholar
  290. 290.
    Wahl, R.: Über das Vorkommen von Metanikotin in natürlich nikotinfreien Tabaksorten. Tabak-Forsch. Sonderheft 36 (1953).Google Scholar
  291. 291.
    Wahlberg, I., K. Karlsson, D. J. Austin, N. Junker, J. Roeraade, C. R. Enzell, and W. H. Johnson: TO be published.Google Scholar
  292. 292.
    Wahlberg, I., K. Karlsson, and C. R. Enzell: To be published.Google Scholar
  293. 293.
    Wahlberg, I., K. Karlsson, T. Nishida, K.-P. Cheng, and C. R. Enzell: TO be published.Google Scholar
  294. 294.
    Warfield, A. H., W. D. Galloway, and A. G. Kallianos: Some new alkaloids from Burley tobacco. Phytochem. 11, 3371 (1972).Google Scholar
  295. 295.
    Von Wartburg, B. R., H. R. Wolf, und O. Jeger: Photochemische Reaktionen. Neuartige Photoreaktionen des (±)-trans-β-Ionon-Epoxids. Helv. Chim. Acta 56, 1948 (1973).Google Scholar
  296. 296.
    Von Wartburg, B. R., H. R. Wolf, und O. Jeger: Photochemische Reaktionen. Notiz zur Photoreaktivität ausgewählter ungesättigter Ketoalkohole der Iononreihe. Helv. Chim. Acta 56, 1956 (1973).Google Scholar
  297. 297.
    Weil, L., and J. Mäher: Photodynamic action of méthylène blue on nicotine and its derivatives. Arch. Biochem. 29, 241, (1950).Google Scholar
  298. 298.
    Weiss, G., M. Koreeda, and K. Nakanishi: Stereochemistry of theaspirone and the blumenols. Chem. Commun. 565 (1973).Google Scholar
  299. 299.
    Wenusch, A.: Über das Auftreten von Nicotyrin im Tabak. Biochem. Z. 275, 361 (1935).Google Scholar
  300. 300.
    Wenusch, A., und R. Supchöller: Beitrag zur Kenntnis der Zusammensetzung des Tabakrauches. Fachl. Mitt. österr. Tabak-Regie 2 (1933).Google Scholar
  301. 301.
    Whitfield, D. M., and K. S. Rowan: Changes in the chlorophylls and caro-tenoids of leaves of Nicotiana tabacum during senescence. Phytochem. 13, 77 (1974).Google Scholar
  302. 302.
    Witkop, B.: Infrared diagnosis of the hydrochlorides of organic bases. II. Structure of myosmine. J. Amer. Chem. Soc. 76, 5597 (1954).Google Scholar
  303. 303.
    Woollen, B. H., W. J. Irvine, P. W. Brown, and D. H. Jones: A thin-layer chro-matographic method for tobacco lipid analysis. Tob. Sci. 16, 101 (1972).Google Scholar
  304. 304.
    Wright, Jr., H. E., W. W. Burton, and R. C. Berry Jr.: Carotenoids and related colorless polyenes of aged Burley tobacco. Arch. Biochem. Biophys. 82, 107 (1959).Google Scholar
  305. 305.
    Yang, K. S., R. K. Gholson, and G. R. Waller: Studies on nicotine biosynthesis. J. Amer. Chem. Soc. 87, 4184 (1965).Google Scholar
  306. 306.
    Yasumatsu, N., and S. Akaike: Studies on the volatile bases in tobacco. Part 1. Volatile amines in cured leaves and tobacco plant. Nippon Nogeikagaku Kaishi 39, 347 (1965).Google Scholar
  307. 307.
    Zane, A.: 4,8,13-Duvatriene-l-ol-3-one and 11-isopropyl-4,8-dimethyl-3,7,12-penta-decatriene-2,14-dione isomers from Nicotiana tabacum. Phytochem. 12, 731 (1973).Google Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • C. R. Enzell
    • 1
  • I. Wahlberg
    • 1
  • A. J. Aasen
    • 1
  1. 1.Chemical Research DepartmentSwedish Tobacco CompanyStockhohnSweden

Personalised recommendations