Skip to main content

Part of the book series: Few-Body Systems ((FEWBODY,volume 15/1976))

  • 147 Accesses

Abstract

Since about 1974 gauge-theories become something like a “party-line” in theoretical elementary particle physics. This means that a wide-spread belief links most of our basic ideas with the concept of a local gauge-invariance of nature, although no definite proof exists so far that gauge fields are really there — except in quantum electrodynamics (and gravity?) Admittedly the amount of supporting facts is quite impressive. It ranges from a possible unification of weak and electromagnetic interactions in such a scheme [1] to a number of qualitative, but rather convincing arguments in the field of strong interaction physics, if the latter is based on a field theory of gluon gauge fields. We cite “asymptotic freedom”, which could explain the almost perfect scaling of deep electroproduction [2], the enhancement of ΔI = 1/2 - amplitudes in weak nonleptonic decays [3] and, as an example for a more theoretical result, the persistent ultraviolet divergence of radiative corrections to all orders in the coupling of a gluon-field to matter [4].

Lecture given at XV. Internationale Universitätswochen für Kernphysik, Schladming, Austria,February 16–27,1976.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);

    Article  Google Scholar 

  2. A. Salam, Elementary Particle Physics, N.Svartholm ed. ( Stockholm 1968 ), p. 367.

    Google Scholar 

  3. D.J. Gross and F. Wilczek, Phys. Rev. Letters 30, 1343 (1973), Phys. Rev. D8, 3633 (1973), D9, 980 (1974);

    ADS  Google Scholar 

  4. N. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973),

    Google Scholar 

  5. M.K. Gaillard and B.W. Lee, Phys. Rev. Lett. 33, 108 (1974);

    Article  ADS  Google Scholar 

  6. G. Altarelli and L. Maiani, Phys. Lett. 52:, 351 (1974).

    Google Scholar 

  7. W. Kainz, W. Kummer and M. Schweda, Nucl. Phys. B79, 484 (1974).

    Article  ADS  Google Scholar 

  8. B.S. de Witt, Phys. Rev. 162, 1195 (1967); L.D. Fadeev and V.N. Popov, Phys. Lett. 25B, 29 (1967).

    Google Scholar 

  9. W. Kummer, Acta Phys. Austr. 1A, 149 (1961).

    Google Scholar 

  10. R.L. Arnowitt and S.I. Fickler, Phys. Rev. 127, 1821 (1962); J. Schwinger, Phys. Rev. 130, 402 (1963); Y.P. Yao, Journ. of Math. Phys. 5, 1319 (1964); E.S. Fradkin and I.V. Tyutin, Phys. Rev. D2, 2841 (1970).

    Google Scholar 

  11. W. Kummer, Acta Phys. Austr. 41, 315 (1975).

    Google Scholar 

  12. W. Konetschny and W. Kummer, Nucl. Phys. B100, 106 (1975).

    Article  ADS  Google Scholar 

  13. W. Konetschny and W. Kummer, “Unitarity in the Ghost-free axial gauge”, prep. TU Vienna, Jan. 1976.

    Google Scholar 

  14. The extension to more gauge-fields with different couplings is straightforward.

    Google Scholar 

  15. C.N. Yang and R.L. Mills, Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  16. B.S. de Witt, Phys. Rev. 162, 1195 (1967).

    Article  MATH  Google Scholar 

  17. Our metric is g00 = -g11 = -g22 = -g33 = -1.

    Google Scholar 

  18. P. Higgs, Physics 12, 132 (1966); T.W.B. Kibble, Phys. Rev. 155, 1554 (1967).

    Google Scholar 

  19. In the latter case in each order of perturbation theory the soft-photon technique can be used along the lines of ref.[17]. Now it seems that this can be extended to nonabelian gauge-theories as well [18] by simply averaging over the internal symmetry of the nonabelian vector fields.

    Google Scholar 

  20. F.Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

    Article  ADS  Google Scholar 

  21. Y.P. Yao “On the infrared problem in nonabelian gauge theories”, Michigan prep. UMHE 75-38; Th. Appelquist, J. Carazzone, H. Kluberg - Stern and M. Roth “Infrared finiteness in Yang-Mills theories” FNAL Pub 76/16-THY.

    Google Scholar 

  22. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  23. Cf.e.g. F.A. Berezin, The method of second quantization, Academic Press, New York, London 1966.

    Google Scholar 

  24. A field-independent factor is irrelevant. It cancels in (4.4).

    Google Scholar 

  25. For simplicity we write it without symmetry break-ing, because this is irrelevant for the following argument. The propagators for the spontaneously broken case are very similar, cf. (9.6) below.

    Google Scholar 

  26. S. Weinberg, Phys. Rev, 118, 838 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. G. t’Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  28. N.N. Bogoliubov and O.S. Parasiuk, Acta Math. 97, 227 (1957); K. Hepp, Commun. Math. Phys. 1, 95 (1965).

    Google Scholar 

  29. A. Slavnov, Theor. and Math. Phys. 10, 99 (1972); J.C. Taylor, Nucl. Phys. B33, 436 (1971).

    Google Scholar 

  30. G. Jona - Lasinio, Nuovo Cim. 3_4, 1790 (1964).

    Google Scholar 

  31. B.W. Lee, Phys. Lett. 46B, 214 (1973).

    Google Scholar 

  32. C. Becchi, A. Rouet and R. Stora, Phys. Lett. 52B, 344 (1974).

    Google Scholar 

  33. J. Zinn-Justin, Lectures at the International Summer Institute for Theoretical Physics, Bonn 1974.

    Google Scholar 

  34. Y. Nambu, Phys. Lett. 26B, 626 (1966).

    Google Scholar 

  35. For an excellent review of the whole subject of the renormalization of gauge - fields cf. ref. [33].

    Google Scholar 

  36. G. Costa and M. Tonin, Rivista del Nuovo Cim. 5, 29 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  37. ei refers to the ordinary fields, ea to the C-field in the ghost-free axial gauge.

    Google Scholar 

  38. S. Weinberg, Phys. Rev. Lett. 2J7, 1688 (1970).

    Google Scholar 

  39. In the so called “back-ground-field” method [37] one does not introduce external sources as in (4.2) and (4.3). Instead, the field is replaced by a quantum field ϕi (Q) plus a classical field ϕi (c). Despite a gauge-breaking term for ϕi (Q) the Green’s function (in terms of external ϕi (c) -legs) may retain a gauge-invariance. A short and clear introduction into the complicated literature can be found in [38].

    Google Scholar 

  40. B.S. DeWitt, Phys. Rev. 160, 1113 (1967), 162, 1195 (1967), 162, 1239 (1967); J. Honerkamp, Nucl. Phys. B48, 269 (1972); R. Kallosh, Nucl. Phys. B7J3, 293 (1974).

    Google Scholar 

  41. M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, “Background field method vs. normal field theory in examples…”, Brandeis prep. 1975.

    Google Scholar 

  42. The propagator (4.24) in Feynman-graphs with no external C-legs leads to expressions homogeneous in nµ!

    Google Scholar 

  43. L.D. Landau, Nucl. Phys. 13, 181 (1959), R.J. Eden, P.V. Landshoff, D.I. Olive and J.C.Polkinghorne, The Analytic S-matrix, Cambridge Univ. press 1966.

    Google Scholar 

  44. A more elaborate argument can be found in ref. [lol. It is based on Veltman’s version of the cutting rule [42].

    Google Scholar 

  45. R.E. Cutkosky, Rev. Mod. Phys. 3J3* 448 (1961); M.Veltman, Physica 29, 186 (1963).

    Article  MathSciNet  Google Scholar 

  46. G. tl Hooft, Nucl. Phys. B38, 173 (1971) and B35, 161 (1971); B.W. Lee and J. Zinn - Justin, Phys. Rev. D5, 3137 (1972).

    Google Scholar 

  47. Cf. the second and third ref. [2] and J.M. Cornwall, Phys. Rev. DlO, 500 (1974).

    Google Scholar 

  48. Cf. eq. (4.27).

    Google Scholar 

  49. Cf. Cornwall, ref. (44), end of the “Appendix”, and ref. (4).

    Google Scholar 

  50. J. Frenkel, A class of ghost-free nonabelian gauge theories, prep. Sao Paulo Univ., IFUSP/P-71, Dec. 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Kummer, W. (1976). Renormalization of Nonabelian Gauge Fields. In: Urban, P. (eds) Current Problems in Elementary Particle and Mathematical Physics. Few-Body Systems, vol 15/1976. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8462-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8462-2_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8464-6

  • Online ISBN: 978-3-7091-8462-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics