Drying Process

  • Wayne Ernest Brownell
Part of the Applied Mineralogy book series (MINERALOGY, volume 9)


The drying stage of the manufacturing process can be hampered with serious problems if a thorough understanding of the mechanism of drying claywares is not fixed in mind. While it is desired to keep the formed ware as near to its original size and shape as possible, the shrinkage characteristic of clay-water systems on drying can cause distortion, warping, and even cracking if the process is not carried out with a full appreciation of the mechanism. Some kind of energy, conventionally heat, is necessary to bring the moisture out of the clay piece and an efficient use of this energy is a significant economic factor. The rate of drying is also an important consideration. In factory practice there are as many or more losses of products during drying as there are in the firing operation.


Waste Heat Moisture Stress Barium Carbonate Moisture Gradient Sewer Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Funk, J. E.: Simultaneous weight loss and shrinkage of clays. Am. Ceram. Soc. Bull. 53, 450–52 (1974).Google Scholar
  2. 2.
    Thomas, R. J.: Application of the Diffusion Equation to Clay Drying Below the Critical Point, M.S. Thesis, New York State College of Ceramics, Alfred University, May 1975.Google Scholar
  3. 3.
    Hougen, O. A., H. J. McCauley, and W. R. Marshall Jr.: Limitations of diffusion equations in drying. Trans. Am. Inst. Chem. Engrs. 36, 183–209 (1940).Google Scholar
  4. 4.
    Norton, F. H.: Fine Ceramics, pp. 157–77. New York: McGraw-Hill. 1970.Google Scholar
  5. 5.
    Klein, J. D.: Contributions to the Theory of Drying of Clay Bodies, B.S. Thesis, New York State College of Ceramics, Alfred University, June 1954.Google Scholar
  6. 6.
    Alviset, L.: L’aptitude au séchage des argiles et des jokes -phénoménesde diffusion de l’eau. Ind. Ceram. 524–35 (1967).Google Scholar
  7. 7.
    Packard, R. Q.: Moisture stress in unfired ceramic clay bodies. J. Am. Ceram. Soc. 50, 223–29 (1967).CrossRefGoogle Scholar
  8. 8.
    Moore, F.: The mechanism of moisture movement in clays with particular reference to drying: a concise review. Trans. Brit. Ceram. Soc. 60, 517–39 (1961).Google Scholar
  9. 9.
    Hursh, R. K.: The drying of clay products. Calif. J. Mines Geol. 52, 177–91 (1956).Google Scholar
  10. 10.
    Vassiliou, B., and J. White: Vapour pressure-capillarity relationships in clays and their application to certain aspects of drying. Trans. Brit. Ceram. Soc. 47, 351–78 (1948).Google Scholar
  11. 11.
    Plaul, T.: Das Zustandekommen, Messen und Deuten von Potentialdifferenzen in trocknenden Tonen. Ber. Deut. Keram. Ges. 43, 547–53 (1966).Google Scholar
  12. 12.
    Balint, P.: Drying experiments with green ceramic ware. Epitoanyag 25, 265–68 (1973).Google Scholar
  13. 13.
    Bird, G. W., and A. J. Dale: Jet drying of whiteware. Trans. Brit. Ceram. Soc. 51, 559–72 (1952).Google Scholar
  14. 14.
    Hancock, W.: Drying tableware and other ceramic goods by jet-drying method. Ceramics (London) 5, 408–10 (1954).Google Scholar
  15. 15.
    Cox, R. W., and W. O. Williamson: Differential shrinkage of clays and bodies caused by particle orientation and its significance in testing procedure. Trans. Brit. Ceram. Soc. 57, 85–101 (1958).Google Scholar
  16. 16.
    Kilgore, R. V., and W. O. Williamson: Anomalous differential drying shrinkage of clay-quartz mixtures. J. Am. Ceram. Soc. 51, 181 (1968).CrossRefGoogle Scholar
  17. 17.
    Holdridge, D. A.: Effect of moisture content on the strength of unfired ceramic bodies. Trans. Brit. Ceram. Soc. 51, 401–8 (1952).Google Scholar
  18. 18.
    Foster, P. K.: Moisture stress and the dry strength of ceramic clays. New Zealand J. Sci. 12, 553–63 (1969).Google Scholar
  19. 19.
    Hofmann, V., and A. Rothe: Plastizität und Trockenbiegefestigkeit von Kaolinen und Tonen ohne und mit Zusatz von Quarz. Ber. Deut. Keram. Ges. 47, 296–99 (1970).Google Scholar
  20. 20.
    Williamson, W. O.: Strength of dried clay-review. Am. Ceram. Soc. Bull. 50, 620–25 (1971).Google Scholar
  21. 21.
    Kennard, F. L., III, and W. O. Williamson: Transverse strength of ball clay. Am. Ceram. Soc. Bull. 50, 745–48 (1971).Google Scholar
  22. 22.
    Pask, J. A.: Measurement of dry strength of clay bodies. J. Am. Ceram. Soc. 36 313–18 (1953).CrossRefGoogle Scholar
  23. 23.
    Anwyl, R. H.: Deterioration of dried brick. Am. Ceram. Soc. Bull. 40, 359–61 (1961).Google Scholar
  24. 24.
    Murray, M. J., and E. Tauber: Application of drying theory to design of dryers for the heavy clay industry. J. Austral. Ceram. Soc. 8, 57–61 (1972).Google Scholar
  25. 25.
    Davies, T. E.: The psyehrometry of drying ceramic materials. Ceram. Age 84, 32–33 (1968).Google Scholar
  26. 26.
    Blin, C., and M. Guerga: Trocknen von Keramikerzeugnissen durch dielektrische Verluste. Keram. Z. 21, 157–59 (1969).Google Scholar
  27. 27.
    Brownell, W. E.: Scum and Its Development on Structural Clay Products, Structural Clay Products Research Foundation, Rept. No. 4, McLean, Va. 1955.Google Scholar

Copyright information

© Springer-Verlag/Wien 1976

Authors and Affiliations

  • Wayne Ernest Brownell
    • 1
  1. 1.New York State College of Ceramics at Alfred UniversityAlfredUSA

Personalised recommendations