Skip to main content

The Statistical Interpretation of Non-Equilibrium Entropy

  • Conference paper
Book cover The Boltzmann Equation

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 10/1973))

Abstract

Boltzmann’s original scheme leading to the statistical interpretation of non-equilibrium entropy may be summarized as follows: Dynamics → Stochastic Process (kinetic equation) → Entropy. Recent computer experiments as well as spin echo experiments in dipolar coupled systems illustrate clearly the difficulties in Boltzmann’s derivation. Indeed, they display situations for which a Boltzmann type of a kinetic equation is not valid. The main purpose of this communication will be to show that we can now construct a more general microscopic model of entropy which shows the expected monotoneous approach to equilibrium even in non-Boltzmannian situations such as experiments involving “negative time evolution”.

First dynamic and thermodynamic descriptions of time evolution will be compared. The time inversion symmetry present in the dynamic equations is broken in the thermodynamic description (such as the Fourier equations). The relation between this symmetry breaking and causality will be discussed.

A brief summary of non-equilibrium statistical mechanics leading to the master equation will be given. While this master equation is rigorous it is not well suited for the discussion of the statistical interpretation of entropy mainly because of its non-local character in time. However it leads to a discussion of the dissipativity condition. Briefly this condition means, that the collision operator as defined in this theory is non-vanishing and has a part which is even in the Liouville-von Neumann operator L. As the result the time inversion symmetry of the dynamic equations is broken. Examples of simple systems for which the dissipativity condition can be rigorously verified (in an asymptotic sense when the system becomes large) will be given.

A formulation of dynamics in which the even part of L are explicitly displayed will be indicated. This formulation may be called the “causal” or “obviously causal” formulation of dynamics as causality is now incorporated into the differential equations (and not only as in the usual formulation in the integral representation of the solutions). The transformation from the initial representation to the causal representation conserves averages of all observables. It leads, therefore to equivalent (but not unitary equivalent) representations of dynamics. Examples will be given. In the causal formulation of dynamics there appears a Liapounoff function which is positive and can only decrease in time. This leads directly to a statistical model for non-equilibrium entropy. One of the important features of this new model is that it contains all non-equilibrium correlations which may be introduced through initial conditions. As an application, experiments involving “negative time evolution” will be discussed. It is shown that Loschmidt’s paradox is now solved as during each time interval in such experiments, the entropy production is now positive.

It is concluded that the second law of thermodynamics is valid for all initial value problems when formulated for mechanical systems which satisfy the dissipativity condition indicated above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Wien. Ber. 66 275 (1872). see Wissenschaftliche Abhandlungen, Vol. 1., Verlag von Johann Ambrosius Barth, Leipzig, 1909.

    Google Scholar 

  2. L. Boltzmann, Mechanische Bedeutung des Zweiten Hauptsatzes, Wien. Ber. 53, 199 (1866).

    Google Scholar 

  3. L. Boltzmann, Der Zweite Hauptsatz der Mechanischen Wärmetheorie in Populare Schriften, Verlag von Johann Ambrosius Barth, Leipzig, 1919, p. 25.

    Google Scholar 

  4. H. Bergson, “Evolution Créatrice”, Eds. du Centenaire, Presses Universitaires de France, Paris 1963.

    Google Scholar 

  5. O. Spengler, Der Untergang des Abendlandes

    Google Scholar 

  6. For a modern survey, see L. Brillouin, Tensors, Dover New York, 1946.

    Google Scholar 

  7. A. Kronig, Ann. Physik, 99, 315 (1856).

    ADS  Google Scholar 

  8. R. Clausius, Ann. Physik, 100, 353 (1857).

    ADS  Google Scholar 

  9. J.C. Maxwell, Phil. Mag., 19, 19 (1860).

    Google Scholar 

  10. L. Boltzmann, Wien. Ber., 58, 517 (1869).

    Google Scholar 

  11. see P. Glansdorff & I. Prigogine, Stability, Structure and Fluctuations, Wiley-Interscience, 1971, french edition, Masson, Paris, 1971.

    Google Scholar 

  12. J.0. Hirschfelder, C.F. Curtiss & R.B. Bird, The Molecular Theory of Gases and Liquids, Wiley, New York (1959).

    Google Scholar 

  13. B.J. Alder & T.E. Wainwright, J. Chem. Phys., 33, 1434 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Bellemans and J. Orban, Phys. Letters 24A, 620 (1967).

    ADS  Google Scholar 

  15. see P.T. Ehrenfest, Begriffliche Grundlagen der Statistischen Auffassung der Mechanik, Encycl. Math. Wiss. 4, 4 (1911).

    Google Scholar 

  16. E. Zermelo, Ann. Physik, 57, 485 (1896); 59, 793 (1896).

    MATH  ADS  Google Scholar 

  17. J. Loschmidt, Wien. Ber., 73, 139 (1876).

    Google Scholar 

  18. see specially L. Boltzmann, Lectures on Gas Theory, §§ 87–91, An English translation by St. G. Brush is available, University of California Press, 1964.

    Google Scholar 

  19. J.C. Powless and P. Mansfield, Phys. Letters, 2, 58 (1962).

    Article  ADS  Google Scholar 

  20. P. Mansfield, Phys. Rev., 137, 1961 (1965).

    Article  ADS  Google Scholar 

  21. W.K. Rhim, A. Pines and J.S. Waugh, Phys. Rev. B3, 684 (1971).

    Article  ADS  Google Scholar 

  22. D. Walgraef and P. Brockmans, Physica 59, 37 (1972).

    Article  ADS  Google Scholar 

  23. L. Boltzmann, Wien. Ber., 75, 62 (1877).

    Google Scholar 

  24. S.H. Burbury, Nature 51, 78 (1894).

    ADS  Google Scholar 

  25. M. Planck, Thermodynamik, Berlin & Leipzig, De Gruyter, 1930, p. 83.

    MATH  Google Scholar 

  26. S.R. de Groot and P. Mazur, Non Equilibrium Thermodynamics, North Holland Publ. Co., Amsterdam, 1962.

    Google Scholar 

  27. I. Prigogine, Thermodynamics of Irreversible Processes, 3rd. edition, Wiley-Interscience, New York, 1967.

    Google Scholar 

  28. R. Graham and H. Haken, Phys. Lett. 29A, 530 (1969).

    Article  Google Scholar 

  29. R. Balescu, Statistical Mechanics of Charged Particles, Wiley-Interscience, New York, 1963.

    MATH  Google Scholar 

  30. I. Prigogine, Non Equilibrium Statistical Mechanics, Wiley-Interscience, New York, 1962.

    MATH  Google Scholar 

  31. Cl. George, I. Prigogine and L. Rosenfeld, Koningl. Dansk. Vid. Mat-Phys. Medd. 38, 12, (1972).

    MathSciNet  Google Scholar 

  32. I. Prigogine, Cl. George, F. Henin and L. Rosenfeld, to appear Proc. Roy. Swedish Acad., Stockholm, 1972.

    Google Scholar 

  33. Cl. George, Physica, to appear 1972.

    Google Scholar 

  34. M. Reichenbach, The Direction of Time, Univ. California Press, Berkeley and Los Angeles, 1956.

    Google Scholar 

  35. O. Costa de Beauregard, Information and Irreversibility Problems, in Time in Science and Philosophy, ed. by J. Zeman, Czechoslovak Academy of Sciences, Prague 1971, p. 11.

    Google Scholar 

  36. M. Baus, Acad. Roy. Belg. Bull. Cl. Sci., 53, 1291, 1332, 1352, (1967).

    Google Scholar 

  37. L. Lanz and L.A. Lugiato, Physica 44, 532 (1969).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. A. Grécos, Physica 51, 50 (1970).

    Article  Google Scholar 

  39. see M. Kac, Probability and related topics in physical sciences, Interscience, New York, 1959.

    Google Scholar 

  40. see specially the work of P. Résibois, M. De Leener and others in Physica and Phys. Rev. during the years 1966, 1969 and 1971.

    Google Scholar 

  41. I. Prigogine and P. Résibois, Atti di Simposia Lagrangiano, Accademia delle Science, Torino, 1964.

    Google Scholar 

  42. R. Balescu,Physica 36, 433 (1967).

    ADS  Google Scholar 

  43. A. Einstein and W.Ritz, Phys. Zs., 10, 323 (1909).

    Google Scholar 

  44. G. Stey, to appear Physica 1972.

    Google Scholar 

  45. A. Grécos and I. Prigogine, Physica 59, 77 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Grécos and I. Prigogine,P.N.A.S. 69, 1629 (1972).

    Google Scholar 

  47. F. Henin and M. De Haan, papers to appear in Physica and Acad. Roy. Belg., Bull. Cl. Sc. 1972.

    Google Scholar 

  48. I.Prigogine and G. Severne, Physica 32,1376 (1966),G.Severne, Physical 61, 307 (1972).

    Google Scholar 

  49. I. Prigogine and A. Grécos, Volume in honour of H.Fröhlich, ed. by H. Haken, to appear 1973.

    Google Scholar 

  50. A. Grécos, private communication

    Google Scholar 

  51. I. Prigogine, Cl. George and F. Henin, Physica 45, 418 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Balescu and J. Wallenborn, Physica 54, 477 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  53. A.I. Khinchine, Mathematical Foundations of Informations Theory, Dover Publ. Inc., New York, 1957.

    Google Scholar 

  54. Duk In Choi, Acad. Roy. Belg. Bull. Cl. Sci. 47, 1054 (1971)

    Google Scholar 

  55. A.S. Eddington, The Nature of the Physical World, Cambridge University Press, 1929.

    Google Scholar 

  56. I. Prigogine, La Naissance du temps, Communication at the “Académie Internationale de Philosophie des Sciences”, Drongen-Gand, September 1972 and also Acad. Roy. Belg. Bull. Cl. Sci. to appear 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag

About this paper

Cite this paper

Prigogine, I. (1973). The Statistical Interpretation of Non-Equilibrium Entropy. In: Cohen, E.G.D., Thirring, W. (eds) The Boltzmann Equation. Acta Physica Austriaca, vol 10/1973. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8336-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8336-6_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8338-0

  • Online ISBN: 978-3-7091-8336-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics