Skip to main content

Self and Mutual Radiation Impedance

  • Chapter

Abstract

The computation of the acoustic impedance requires the knowledge of the pressure in the immediate vicinity of the piston membrane. Lord Rayleigh computed this impedance by an ingeneous method based on potential theory. His derivation will be reproduced first.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Radiation Impedance

  • Bies, D. A.: Effect of a reflecting plane on an arbitrarily oriented multipole. J.A.S.A. 33 (1961) 286.

    MathSciNet  Google Scholar 

  • Brekhovskikh, L.: Reflection of spherical waves on the plane separation of two media. J. Tech. Phys. (U.S.S.R.) 18 (1948) 455–482 (in Russian).

    Google Scholar 

  • Horton, C. W., Sobey, A. E., Jr.: Studies on the near fields of monopole and dipole acoustic sources. J.A.S.A. 30 (1958) 1088.

    Google Scholar 

  • Ingard, U.: On the theory and design of acoustic resonators. J.A.S.A. 25 (1953) 1037.

    Google Scholar 

  • Ingard, U., Lamb, G. L., JR.: Effect of a reflecting plane on the power output of sound sources. J.A.S.A. 29 (1957) 743.

    Google Scholar 

  • Ingard, U., Lyon, R. H.: Impedance of a resistance loaded Helmholtz resonator. J.A.S.A. 25 (1953) 854.

    Google Scholar 

  • Karnovskh, M. I.: Interaction acoustical impedances of spherical radiators and resonators. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 32 (1941) 40–43.

    Google Scholar 

  • Mclachlan, N. W.: Loudspeakers. Oxford: Clarendon Press. 1934.

    Google Scholar 

  • Mcleroy, E. G.: Complex image theory of low-frequency sound propagation in shallow water. J.A.S.A. 33 (1961) 1120.

    Google Scholar 

  • Morse, P. M., Ingard, U.: Theoretical acoustics. New York, N. Y.: McGraw-Hill. 1968;

    Google Scholar 

  • Morse, P. M., Ingard, U.: Linear acoustic theory, p. 1–127 (in Handbuch der Physik, Vol. XI ). Berlin Göttingen—Heidelberg: Springer. 1962.

    Google Scholar 

  • Paul, D. I.: Acoustical radiation from a point source in the presence of two media. J.A.S.A. 29 (1957) 1102.

    Google Scholar 

  • Rayleigh, Lord: The theory of sound, Vol. I. London: Macmillan. 1894.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Self and Mutual Radiation Impedance. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_29

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics