Skip to main content

Solution of the Wave Equation in General Spherical Coordinates

  • Chapter
The Foundations of Acoustics
  • 1737 Accesses

Abstract

If the solution depends not only on r, but also on the polar angle θ and the azimuth φ, the elementary volume becomes a parallelepiped of length rdθ, of width r sinθ dφ and of height dr as shown in Fig. 1. The wave equation is derived by considering the excess of volume that leaves the elementary volume relative to that entering it. This volume (or mass) of flow consists of three different components:

  1. (a)

    that through the two surfaces perpendicular to r:

    $$ - d\tau {{\left[ {div\vec{v}} \right]}_{r}} = {{r}^{2}}\sin \theta d\theta d\phi {{v}_{r}}(r) - {{\left[ {r + dr} \right]}^{2}}\sin \theta d\theta d\phi {{v}_{r}}(r + dr) = {\text{ }} = - \frac{\partial }{\partial }r({{r}^{2}}{{v}_{r}})dr\sin \theta d\theta d\phi ,{\text{ }}gathered $$
    (1)
  2. (b)

    that through the two surfaces normal to the polar axis θ = const:

    $$ \begin{gathered} - d\tau {[div \vec v]_\theta } = rdrd\phi \sin \theta v\theta (\theta ) - rdrd\phi \sin (\theta + d\theta ){v_\theta }(\theta + d\theta ) = \hfill \\ = - \frac{\partial }{{\partial \theta }}(\sin \theta v\theta (\theta ))rdrd\theta d\phi , \hfill \\ \end{gathered} $$
    (2)
  3. (c)

    that through the two surfaces at φ and φ + :

    $$ \begin{gathered} - d\tau {[div \vec v]_\phi } = rdrd\theta v\phi (\phi ) - rdrd\theta {v_\phi }(\phi + d\phi ) = \hfill \\ = - \frac{{\partial {v_\phi }}}{{\partial \phi }}rdrd\theta d\phi . \hfill \\ \end{gathered} $$
    (3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Anderson, V. C.: Sound scattering from a fluid sphere. J.A.S.A. 22 (1950) 426.

    Google Scholar 

  • Anderson, D. V., Northwood, T. D., Barnes, C.: The reflection of a pulse by a spherical surface. J.A.S.A. 24 (1952) 276–283.

    Google Scholar 

  • Atherton, E., PETERS, R. H.: Some aspects of light scattering from polydisperse systems of spherical particles. J. Appl. Physics 4 (1953) 344–349.

    Google Scholar 

  • Ballantine, ST.: Effect of diffraction around the microphone in sound measurements. Physic. Rev. 32 (1928) 988–992.

    Article  ADS  Google Scholar 

  • Barakat, R. G.: Transient diffraction of scalar waves by a fixed sphere. J.A.S.A. 32 (1960) 61.

    MathSciNet  Google Scholar 

  • Barnes, C., Anderson, D. V.: The sound field from a pulsating sphere and the development of a tail in pulse propagation. J.A.S.A. 24 (1952) 229–229.

    Google Scholar 

  • Barnes, C., Northwood, T. D.: Reflection of a pulse by a spherical surface. J.A.S.A. 24 (1952) 276.

    Google Scholar 

  • Bass, R.: Diffraction effects in the ultrasonic field of a piston source. J.A.S.A. 30 (1958) 602.

    MathSciNet  Google Scholar 

  • Bondareva, L. N., Karnovskii, M.: Directional properties of acoustic scattering lenses. Sov. Phys. Acoust. 1 (1955) 133.

    Google Scholar 

  • Boyles, C. A.: Radiation characteristics of spherically symmetric, perfect focusing acoustic lenses. J.A.S.A. 45 (1969) 351;

    Google Scholar 

  • Boyles, C. A.: Wave theory of an acoustic Luneberg lens. J.A.S.A. 43 (1968) 709;

    Google Scholar 

  • Boyles, C. A.: Wave theory of an acoustic Luneberg lens. II. The theory of variable density lenses. J.A.S.A. 45 (1969) 356.

    Google Scholar 

  • Byerly, W. E.: Fourier series and spherical harmonics, p. 172, eq. 6. Boston: Ginn and Co. 1893.

    Google Scholar 

  • Chertock, G.: Sound radiation from vibrating surfaces. J.A.S.A. 36 (1964) 1305.

    Google Scholar 

  • Chertock, G., Grosso, M. A.: Some numerical calculations of sound radiation from vibrating surfaces. J.A.S.A. 40 (1966)924 (TNRB).

    Google Scholar 

  • Cohen, D. S., Handelman, G. H.: Scattering of a plane acoustical wave by a spherical obstacle. J.A.S.A. 38 (1965) 837.

    MathSciNet  Google Scholar 

  • Copley, L. C.: Fundamental results concerning integral representations in acoustic radiation. J.A.S.A. 44 (1968) 28–32.

    MATH  Google Scholar 

  • Cruzan, O. R.: Translation addition theorems for spherical vector wave functions. Quart. Appl. Math. 20 (1962) 33–40.

    MathSciNet  MATH  Google Scholar 

  • Ehlers, F. E.: Pressure waves in an accelerated sphere filled with a compressible liquid. J.A.S.A. 46 (1969) 605.

    Google Scholar 

  • Einspruch, N. G., Trlrell, R.: Scattering of a plane longitudinal wave by a spherical fluid obstacle in an elastic medium. J.A.S.A. 32 (1960) 214.

    Google Scholar 

  • Embleton, T. F. W.: Mutual interaction between two spheres in a plane sound field. J.A.S.A. 34 (1962) 1714.

    MathSciNet  Google Scholar 

  • Engin, A. E.: Vibrations of fluid-filled spherical shells. J.A.S.A. 46 (1969) 186.

    Google Scholar 

  • Faran, J. J.: Sound scattering by solid cylinders and spheres. J.A.S.A. 23 (1951) 405–418.

    MathSciNet  Google Scholar 

  • Feit, D., Junger, M. C.: High-frequency response of an elastic spherical shell. J. Appl. Mech., December, 1969.

    Google Scholar 

  • Ferris, H. G.: Free vibrations of a gas contained within a spherical vessel. J.A.S.A. 24 (1952) 57.

    Google Scholar 

  • Fox, F. E.: Sound pressure on spheres. J.A.S.A. 12 (1940) 147–149.

    Google Scholar 

  • Frey, H. G., Goodman, R. R.: Acoustic scattering from fluid spheres. J.A.S.A. 40 (1966) 417.

    MATH  Google Scholar 

  • Friedman, B., Russek, J.: Addition theorems for spherical waves. Quart. Appl. Math. 12 (1954) 13–23 (see also STEIN, S. 1961 ).

    Google Scholar 

  • Frisk, G. V., Santo, J. A. De: Scattering by spherically symmetric inhomogeneities. J.A.S.A. 47 (1970) 172.

    Google Scholar 

  • Güttler, A.: Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern and ihre Bedeutung für Probleme der interstellaren Materie and des atmosphärischen Aerosols. Ann. Physik 11 (1953) 65–98.

    Google Scholar 

  • Hart, R. W.: Sound scattering of a plane wave from a nonabsorbing sphere. J.A.S.A. 23 (1951) 323–328.

    Google Scholar 

  • Hayek, S. I.: Vibration of a spherical shell in an acoustic medium. J.A.S.A. 40 (1966) 342.

    MATH  Google Scholar 

  • Hickling, R.: Echoes from spherical shells in air. J.A.S.A. 42 (1967) 388.

    Google Scholar 

  • Hickling, R., Means, R. W.: Scattering of frequency-modulated pulses by spherical elastic shells in water. J.A.S.A. 44 (1968) 1246.

    Google Scholar 

  • Hiedemann, E.: Einwirkung von Schall und Ultraschall auf Aerosole. Kolloid Z. 77 (1936) 168–172;

    Article  Google Scholar 

  • Hiedemann, E.: Schallabsorption in feuchter und nebelhaltiger Luft. Verh. deutsch. physik. Ges. 28 (3) (1939) 59 60.

    Google Scholar 

  • Hill, J. L.: Torsional-wave propagation from a rigid sphere semiembedded in an elastic half-space. J.A.S.A. 40 (1966) 376.

    Google Scholar 

  • Hobson, E. W.: The theory of spherical and ellipsoidal harmonics. New York, N. Y.: Chelsea Publishing. 1955.

    Google Scholar 

  • Hodgkinson, T. G.: The response of a spherical fluid particle suspended in air to irradiation with sound at the natural frequency of the particle. Acustica 3 (1953) 383 390.

    Google Scholar 

  • Huang, H.: Transient interaction of plane acoustic waves with a spherical elastic shell. J.A.S.A. 45 (1969) 661.

    Google Scholar 

  • Ingard, U.: On the reflection of a spherical sound wave from an infinite plane. J.A.S.A. 23 (1951) 329–335;

    MathSciNet  Google Scholar 

  • Ingard, U.: Near field of a Helmholtz resonator exposed to a plane wave. J.A.S.A. 25 (1953) 1062.

    Google Scholar 

  • Ingaiw, U., Lyon, R. H.: Impedance of a resistance loaded Helmholtz resonator. J.A.S.A. 25 (1953) 854.

    Google Scholar 

  • Junger, M. C.: Radiation loading of cylindrical and spherical surfaces. J.A.S.A. 24 (1952) 288 239;

    MathSciNet  Google Scholar 

  • Junger, M. C.: Sound scattering by thin elastic shells. J.A.S.A. 24 (1952) 366;

    MathSciNet  Google Scholar 

  • Junger, M. C.: Surface pressures generated by pistons on large spherical and cylindrical baffles. J.A.S.A. 41 (1967) 1336–1346.

    Google Scholar 

  • Junger, M. C., Thompson, W., JR.: Oscillatory acoustic transients radiated by impulsively accelerated bodies. J.A.S.A. 38 (1965) 978.

    Google Scholar 

  • Keller, J B, Keller, H. B.: Reflection and transmission of sound by a spherical shell. J.A.S.A. 20 (1948) 310–313.

    Google Scholar 

  • Kim, S. J., Chen, Y. M.: Scattering of acoustic waves by a penetrable sphere with statistically corrugated surface. J.A.S.A. 42 (1967) 1.

    MATH  Google Scholar 

  • König, W.: Hydrodynamisch akustische Untersuchungen. Ann. Physik 42 (1891) 353–373, 549–563; 43 (1891) 43–60.

    Article  Google Scholar 

  • Krom, M. N.: Field fluctuations near the focus of a lens. Soy. Phys. Acoust. 5 (1959) 43.

    Google Scholar 

  • Kuhl, W.: On the directivity of spherical microphones. Acustica 2 (1952) 226–231.

    Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge 1906.

    Google Scholar 

  • Lax, M., Fischbach, H.: Absorption and scattering by spheres and cylinders. J.A.S.A. 20 (1948) 108–124.

    Google Scholar 

  • Lense, J.: Kugelfunktionen. Leipzig: Akademische Verlagsgesellschaft. 1950.

    MATH  Google Scholar 

  • Lindh, G.: Transmission of a transient spherical wave at a plane interface. Acustica 12 (1962) 108.

    MATH  Google Scholar 

  • Lord, G.: Wave analysis of a Luneberg-Gutman fluid acoustic lens. J.A.S.A. 45 (1969) 885.

    Google Scholar 

  • Macrobert, T. M.: Spherical harmonics, 2d rev. ed. New York, N. Y.: Dover Publication. 1948.

    Google Scholar 

  • Magnus, W., Obertiettinger, F.: Formulas and theorems for the special functions of mathematical physics. New York, N. Y.: Chelsea Publishing. 1949.

    Google Scholar 

  • Marnevskaya, L. A.: Diffraction of a plane scalar wave by two spheres. Sov. Phys. Acoust. 14 (1969) 356;

    Google Scholar 

  • Marnevskaya, L. A.: Plane wave scattering by two acoustically-rigid spheres. Soy. Phys. Acoust. 15 (1970) 499.

    Google Scholar 

  • Mcivor, I. K.: Axisymmetric response of a closed spherical shell to a nearly uniform radial impulse. J.A.S.A. 40 (1966) 1540.

    Google Scholar 

  • Meyer, E., Just, P.: Messung der Gesamtenergie von Schallquellen. Z. techn. Physik 10 (1929) 309–316.

    Google Scholar 

  • Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik 25 (4) (1908) 377.

    Article  ADS  MATH  Google Scholar 

  • Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York, N. Y.: McGraw-Hill. 1961.

    Google Scholar 

  • Morse, P. M., Ingard, K. U.: Theoretical acoustics. New York, N. Y.: McGraw-Hill. 1968.

    Google Scholar 

  • Mortell, M. P.: Waves on a spherical shell. J.A.S.A. 45 (1969) 144.

    MATH  Google Scholar 

  • Oestreicher, H. L.: Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics. J.A.S.A. 23 (1951) 707;

    MathSciNet  Google Scholar 

  • Oestreicher, H. L.: Representation of the field of an acoustic source as a series of multipole fields. J.A.S.A. 29 (1957) 1219.

    MathSciNet  Google Scholar 

  • Ott, H.: Zur Reflexion von Kugelwellen. Ann. Physik 4 (1949) 432–440.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pol, B. Van Der, Breivmrer, H.: The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Philos. Mag. 24 (1937) 141–176, 825–864.

    Google Scholar 

  • Prasad, G.: A treatise on spherical harmonics and the functions of Bessel andLamé, Part II ( Advanced). Benares City, India: Mahamandal Press. 1932.

    Google Scholar 

  • Pritchard, R. L.: The directivity of spherical microphones. Acustica (1953) 359–362. RAYLEIGH, Lord: Theory of sound. London: Macmillan. 1929.

    Google Scholar 

  • Robin, L.: Fonctions sphériques de Legendre et fonctions sphéroidales, Tome I, 11, 111. Paris, France: Gauthier-Villars. 1957.

    Google Scholar 

  • Rudgers, A. J.: Acoustic pulses scattered by a rigid sphere immersed in a fluid. J.A.S.A. 45 (1969) 900.

    Google Scholar 

  • Rzhevkin, S. N.: Energy movement in the field of a spherical sound radiator. J. techn.Physik (USSR) 19 (1949) 1380–1396;

    Google Scholar 

  • Rzhevkin, S. N.: Energy movement in the field of a spherical sound radiator. Physics Abstr. 53 (1950) 3862.

    Google Scholar 

  • Schenck, H. Improved integral formulation for acoustic radiation problems. J.A.S.A. 44 (1968) 41–48.

    Google Scholar 

  • Schmidt, H.: Einführung in die Theorie der Wellengleichung. Leipzig: Barth. 1931.

    Google Scholar 

  • Schwarz, L.: Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel. Akust. Z. 8 (1943) 91–117.

    Google Scholar 

  • Senior, T. B. A. Control of the acoustic scattering characteristics of a rigid sphere by surface loading.J.A.S.A. 37 (1965) 464.

    Google Scholar 

  • Sraposxnikov, N. N., Maxarov, G. I., Kozina, O. G.: Transient processes in the acoustic fields generated by a vibrating spherical segment. Sov. Phys. Acoust. 8 (1962) 53.

    Google Scholar 

  • Sivuxxirr, D. V.: Diffraction of plane sound waves by a spherical cavity. Sov. Phys. Acoust. 1 (1957) 82.

    Google Scholar 

  • Snow, C.: Hypergeometric and Legendre functions with applications to integral equations of potential theory. NBS Applied Math. Series 19 ( U.S. Government Printing Office, Washington, D.C., 1952 ).

    Google Scholar 

  • Sonstegard, D. A.: Axisymmetric response of a closed spherical shell to a nearly uniform radial impulse. J.A.S.A. 40 (1966) 1540.

    Google Scholar 

  • Stein, S.: Addition theorem for spherical wave functions. Quart. Appl. Math. 19 (1961) 15–24.

    MathSciNet  MATH  Google Scholar 

  • Stenzel, H.: Über die von einer starren Kugel hervorgerufene Störung des Schallfeldes. E.N.T. 15 (1938) 71 78;

    Google Scholar 

  • Stenzel, H.:Leitfaden zur Berechnung von Schallvorgängen. Berlin: Springer. 1939.

    Google Scholar 

  • Tartakovskii, B. D.: Diffraction structure of the image of a point produced by an acoustic lens. Sov. Phys. Acoust. 9 (1964) 383;

    MathSciNet  Google Scholar 

  • Tartakovskii, B. D.: An experimental study of the gain in acoustio focussing lenses. Sov. Phys. Acoust. 9 (1964) 272;

    MathSciNet  Google Scholar 

  • Tartakovskii, B. D.: Amplification factor of a solid acoustic lens with losses. J.A.S.A. 8 (1969) 176 (228).

    Google Scholar 

  • Temby, A. C.: Sound diffraction in the vicinity of the human ear. Acustica 15 (1965) 219.

    Google Scholar 

  • Thorne, R. C.: The asymptotic expansion of Legendre functions of large degree and order. Philos. Trans. Roy. Soc. London 249 (1957) 597–620.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Watson, G. N.: A treatise on the theory of Bessel functions, 2d ed. Cambridge, England: Cambridge Univ. Press. 1958.

    Google Scholar 

  • West, W.: A point-source of sound. Post Office Electr. Engr. J. 20 (1927) 184–187.

    Google Scholar 

  • Whittaker, E. T., Watson, G. N.: A course of modern analysis. Cambridge Univ. Press. (Am. Ed.) 1945, p. 330, example 3.

    Google Scholar 

  • Wiener, F. M.: Sound diffraction by rigid spheres and circular cylinders. J.A.S.A. 19 (1947) 444–451.

    Google Scholar 

  • Williams, W., Parks, N. G., Moran, D. A., Sherman, CH. H.: Acoustic radiation from finite cylinders. J.A.S.A. 36 (1964) 2316.

    Google Scholar 

  • Zoller, K.: Die Bewegung einer starren Kugel infolge einer Druckwelle. Akust. Z. 8 (1943) 213 219;

    Google Scholar 

  • Zoller, K.: Die Störung einer Druckfront durch eine starre, unbewegliche Kugel. Akust. Z. 8 (1943) 208–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Solution of the Wave Equation in General Spherical Coordinates. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics