Skip to main content

Sound Propagation in Ideal Channels and Tubes

  • Chapter
Book cover The Foundations of Acoustics
  • 1635 Accesses

Abstract

Let us first consider an infinitely wide channel, so that the solution depends only on x and z 1. The two-dimensional solution of the wave equation that represents standing waves in the x direction and progressive waves in the z direction is

$$ \tilde p = \bar A\cos ({k_x}x + {\varphi _x}){e^{ - j{k_z}z + j\omega t}}, $$
(1)

where

$$ {k^2} = \frac{{{\omega ^2}}}{{{c^2}}} = {k_{{x^2}}} + {k_{{z^2}}}. $$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beranek, L. L.: Precision measurement of acoustic impedance. J.A.S.A. 12 (1940) 3–13;

    Google Scholar 

  • Beranek, L. L.: Some notes on the measurement of acoustic impedance. J.A.S.A. 19 (1947) 420–427;

    Google Scholar 

  • Beranek, L. L.: Acoustic measurements. New York: Wiley, London: Chapman and Hall. 1949.

    Google Scholar 

  • Bolt, R. H., Petrauskas, A. A.: An acoustic impedance meter for rapid field measurements. J.A.S.A. 15 (1943) 79–79.

    Google Scholar 

  • Brüel, P. V.: Sound insulation and room acoustics. London: Chapman and Hall. 1951.

    Google Scholar 

  • Casper, L., Sommer, G.: Über Messungen des Schallreflexionskoeffizienten an Materialien bei definierten Schallfeldverhältnissen. Wiss. Veröff. Siemens-Werken 10 (1931)117–127.

    Google Scholar 

  • Clapp, C. W., Firestone, F. A.: The acoustic wattmeter, an instrument for measuring sound energy flow. J.A.S.A. 13 (1941) 124–136.

    Google Scholar 

  • Cramer, W. S.: Pulse tube for the measurement of acoustic impedance. J.A.S.A. 25 (1953) 186.

    Google Scholar 

  • Cremer, L.: Die wissenschaftl. Grundlagen der Raumakustik, Bd. III, Wellentheoretische Raumakustik. Leipzig: Hirzel. 1950.

    Google Scholar 

  • Davis, A. H., Evans, E. J.: Measurement of absorbing power of materials by the stationary wave method. Proc. Roy. Soc. London (A) 127 (1930) 89–110.

    Article  ADS  MATH  Google Scholar 

  • Dubotjt, P., Davern, W.: Calculation of the statistical absorption coefficient from acoustic impedance tube measurements. Acustica 9 (1959) 15.

    Google Scholar 

  • Fedorovich, V. N.: Method for measuring acoustical impedance on the basis of measuring the geometric difference between sound pressures. Sov. Phys. Acoust. 1 (1955) 374.

    Google Scholar 

  • Ferrero, M. A., Sacerdote, G. G.: Measurement of acoustic impedance in a resonant spherical enclosure. Acustica 8 (1958) 325.

    Google Scholar 

  • Guittard, J.: Impedances terminales de tuyaux sonores sylindriques. Acustica 12 (1962) 313.

    Google Scholar 

  • Hall, W. M.: An acoustic transmission line for impedance measurement. J.A.S.A. 11 (1939, 1940 ) 140–146.

    Google Scholar 

  • Hund, M., Kuttruff, H.: Druckkammerverfahren zur Messung von akustischen Impedanzen kleiner Körper (Mikrophone) in Flüssigkeiten. Acustica 12 (1962) 404.

    Google Scholar 

  • Ingard, U., Bolt, R. H.: Free field method of measuring the absorption coefficient of acoustic materials. J.A.S.A. 23 (1951) 509–516.

    Google Scholar 

  • Kosten, C. W.: A new method for measuring sound absorption. Appl. scient. Res. B 1 (1950) 35–49;

    Google Scholar 

  • Kosten, C. W.: A method for measuring sound absorption. Acustica 4 (1954) H. 1.

    Google Scholar 

  • Kosten, C. W., Zwikker, C.: Die Messung von akustischen Scheinwiderständen und Schluckzahlen durch Rückwirkung auf ein Telefon. Akust. Z. 6 (1941) 124–131.

    Google Scholar 

  • Lippert, W. K. R.: The practical representation of standing waves in an acoustic impedance tube. Acustica 3 (1953) 153–160.

    Google Scholar 

  • Loye, D. P., Morgan, R. L.: Acoustic tube for measuring the sound absorption coefficients of small samples. J.A.S.A. 13 (1942) 261–264.

    Google Scholar 

  • Mawardi, O. K.: On the generalization of the concept of impedance in acoustics. J.A.S.A. 23 (1951) 571–576;

    MathSciNet  Google Scholar 

  • Mawardi, O. K.:The measurement of acoustic impedance of small samples. Acustica 4 (1954) 112–114.

    Google Scholar 

  • Morrical, K. C.: A modified tube method for measurement of sound absorption. J.A.S.A. 8 (1931) 162–171.

    Google Scholar 

  • Morton, J. Y.: A measuring set for acoustical and mechanical impedances. Acustica 4 (1954) H. 1.

    Google Scholar 

  • Neubert, H.: Die Messung winkelabhängiger Schallschluckung in einer zweidimensionalen Hallkammer. Akust. Z. 5 (1940) 189–201;

    Google Scholar 

  • Neubert, H.:Die Messung winkelabhängiger Schallschluckung in einer zweidimensionalen Hallkammer. Dissertation, Berlin 1940.

    Google Scholar 

  • Nielsen, A. K.: The construction of acoustic impedance meters. Acustica 4 (1954) H. 1.

    Google Scholar 

  • Paris, E. T. H.: On the stationary-wave method of measuring sound absorption at normal incidence. Proc. Physic. Soc. 39 (1927) 269–295.

    ADS  Google Scholar 

  • Raes, A. C.: Pulse measurements of reflection coefficients in amplitude and phase. Acustica 4 (1954) H. 1.

    Google Scholar 

  • Richardson, E. G.: Amplitude of stationary waves in tubes. Proc. Roy. Soc. A 112 (1926) 522–541.

    Article  ADS  Google Scholar 

  • Robinson, N. W.: An acoustic impedance bridge. Philos. Mag. 23 (1937) 665–680.

    Google Scholar 

  • Sabine, H. J.: Notes on acoustic impedance measurements. J.A.S.A. 13 (1942) 143–150.

    Google Scholar 

  • Schuster, K.: Eine Methode zum Vergleich akustischer Impedanzen. Physik. Z. 35 (1934) 408 409;

    Google Scholar 

  • Schuster, K.: Messung von akustischen Impedanzen durch Vergleich. E.N.T. 13 (1936) 164–176.

    Google Scholar 

  • Scott, R. A.: An apparatus or accurate measurements of sound absorbing materials. Proc. Physic. Soc. London 60 (1948) 253–264.

    ADS  Google Scholar 

  • Smith, P. H.: An improved transmission line calculator. Electronics 17 (1944) January 130–133, 318 325.

    Google Scholar 

  • Steiner, F.: Die Anwendung der Riemannschen Zahlenkugel und ihrer Projektion in der Wechselstromtechnik. Radiowelt 1 (1946) 23–26.

    Google Scholar 

  • Stewart, G. W.: Direct absolute measurement of acoustical impedance. Physic. Rev. 28 (1926) 1038 1047.

    Google Scholar 

  • Tamm, K.: Ein-und zweidimensionale Ausbreitung von Wasserschall im Rohr bzw. im Flachbecken. Akust. Z. 6 (1941) 16–34.

    Google Scholar 

  • Taylor, H. O.: Tube method of measuring sound absorption. J.A.S.A. 24 (1952) 701–704.

    Google Scholar 

  • Thurston, G. B.: Apparatus for absolute measurement of analogous impedance of acoustic elements. J.A.S.A. 24 (1952) 649–652.

    Google Scholar 

  • Wente, E. C., Bedell, E. H.: The measurement of acoustic impedance and the absorption coefficient of porous materials. B.S.T.J. 7 (1928) 1.

    Google Scholar 

  • Westervelt, P. J.: Acoustical impedance in terms of energy functions. J.A.S.A. 23 (1951) 347–348.

    MathSciNet  Google Scholar 

  • White, J. E.: Method for measuring source impedance and tube attenuation. J.A.S.A. 22 (1950) 565.

    Google Scholar 

  • Willms, W.: Zum Begriff der Schallimpedanz. Acustica 4 (1954) 427.

    Google Scholar 

  • Wisotzky, W.: Messung akustischer Widerstände. Hochfrequenztechn. u. Elektroak. 53 (1939) 97–104.

    Google Scholar 

  • Wüst, H.: Untersuchungen über akustische Vierpole. Hochfrequenztechn. u. Elektroak. 44 (1934) 73–79.

    Google Scholar 

  • Ballantine, S.: J. Franklin Inst. 203 (1927) 85.

    Article  Google Scholar 

  • Carisle, R. W.: Method of improving acoustic transmission in folded horns. J.A.S.A. 31 (1959) 1135.

    Google Scholar 

  • Eisner, E.: Complete solutions of the “Webster” horn equation. J.A.S.A. 41 (1967) 1126.

    Google Scholar 

  • Goldsmith, A. N., Minton, J. P.: Proc. Inst. Radio Eng 12 (1924) 423. HALL, W. M.: J.A.S.A. 3 (1932) 552.

    Google Scholar 

  • Hanna, C. R., Slepian, J.: J. Am. Inst. Elect. Eng 43 (1924) 250.

    Google Scholar 

  • Hoersch, V. A.: Phys. Rev. 25 (1925) 218; Phys. Rev. 25 (1925) 225.

    Article  ADS  Google Scholar 

  • Kellogg, E. W.: Gen. Elect. Rev. 27 (1924) 556.

    Google Scholar 

  • Lambert, R. F.: Acoustical studies of the tractrix horn. I. J.A.S.A. 26 (1954) 1024.

    Google Scholar 

  • Maxfield, J. P., Harrison, H. C.: J. Am. Inst. Elect. Eng. 45 (1926) 243.

    Google Scholar 

  • Mckinney, C. M., Anderson, C. D.: Experimental investigation of wedge horns used with line hydrophones. J.A.S.A. 26 (1954) 1040.

    Google Scholar 

  • Mclachlan, N. W.: Loudspeakers. Oxford: Clarendon Press. 1934.

    Google Scholar 

  • Mohammed, A.: Equivalent circuits of solid horns undergoing longitudinal vibrations. J.A.S.A. 38 (1965) 862.

    Google Scholar 

  • Northwood, T. D., Pettigrew, H. C.: Horn as a coupling element for acoustic impedance measurements. J.A.S.A. 26 (1954) 503.

    Google Scholar 

  • Olson, H. F., Massa, F.: Applied acoustics. Philadelphia: Blackiston’s Son and Co. 1934.

    Google Scholar 

  • Pyle, R. W., Jr.: Solid torsional horns. J.A.S.A. 41 (1967) 1147.

    Google Scholar 

  • Scibor-MarchochI, R. I.: Analysis of hypex horns. J.A.S.A. 27 (1955) 939.

    Google Scholar 

  • Stenzel, H.: A. E. G. Mitteil. H. 5 (1931) 310; Z. techn. Physik 12 (1931) 621.

    Google Scholar 

  • Stewart, G. W.: Phys. Rev. 16 (1920) 313; Phys. Rev. 25 (1925) 230.

    Article  ADS  Google Scholar 

  • Webster, A. G.: Proc. Nat. Acad. Sci. Washington, 5 (1919) 275.

    Article  ADS  Google Scholar 

  • Weibel, E. S.: On Webster’s horn equation. J.A.S.A. 27 (1955) 726.

    MathSciNet  Google Scholar 

  • Williams, S.: J Franklin Inst. 202 (1926) 413.

    Article  Google Scholar 

  • Aggarwal, R. R.: Axially symmetric vibrations of a finite isotropic disk, Part I. J.A.S.A. 24 (1952) 463;

    MathSciNet  Google Scholar 

  • Aggarwal, R. R.: Axially symmetric vibrations of a finite isotropic disk,Part II. J.A.S.A. 24 (1952) 663;

    MathSciNet  Google Scholar 

  • Aggarwal, R. R.: Axially symmetric vibrations of a finite isotropic disk,Part III. J.A.S.A. 25 (1953) 533;

    Google Scholar 

  • Aggarwal, R. R.: Axially symmetric vibrations of a finite isotropic disk,Part IV. J.A.S.A. 26 (1954) 341.

    Google Scholar 

  • Akhmedov, I. A.: Eigenfrequency spectrum of a plate reverberator. Sov. Phys. Acoust. 15 (1970) 455.

    Google Scholar 

  • Dyer, I.: Response of plates to a decaying and convecting random pressure field. J.A.S.A. 31 (1959) 922.

    MathSciNet  Google Scholar 

  • Feit, D.: Pressure radiated by a point-excited elastic plate. J.A.S.A. 40 (1966) 1489.

    Google Scholar 

  • Gazis, D. C.: Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders. J.A.S.A. 30 (1958) 786.

    Google Scholar 

  • Goodman, R. R.: Reflection from a thin infinite plate using the Epstein method. J.A.S.A. 33 (1961) 1096.

    Google Scholar 

  • Gösele, K.: Schallabstrahlung von Platten, die zu Biegeschwingungen angeregt sind. Acustica 3 (1953) 243.

    Google Scholar 

  • Greene, D. C.: Vibration and sound radiation of damped and undamped flat plates. J.A.S.A. 33 (1961) 1315.

    MathSciNet  Google Scholar 

  • Gutin, L. Y.: Sound radiation from an infinite plate excited by a normal point force. Sov. Phys. Acoust. 10 (1965) 369.

    Google Scholar 

  • Heckl, M.: Schallabstrahlung von Platten bei punktförmiger Anregung. Acustica 9 (1959) 371;

    MathSciNet  Google Scholar 

  • Heckl, M.: Wave propagation on beam-plate systems. J.A.S.A. 33 (1961) 640;

    MathSciNet  Google Scholar 

  • Heckl, M.: Abstrahlung von einer punktförmig angeregten unendlich großen Platte unter Wasser. Acustica 13 (1963) 182;

    Google Scholar 

  • Heckl, M.: Körperschalleistung bei flächenhafter Anregung von Platten. Acustica 15 (1965) 332.

    Google Scholar 

  • Ingard, U.: On the reflection of a spherical sound wave from an infinite plane. J.A.S.A. 23 (1951) 329.

    MathSciNet  Google Scholar 

  • Kaekina, T. M.: Damping of transverse normal modes in plates. Sov. Phys. Acoust. 13 (1968) 380.

    Google Scholar 

  • Klein, B.: Vibration of simply supported flat plates simultaneously tapered in plan-form and thickness. J.A.S.A. 28 (1956) 1177.

    Google Scholar 

  • Knyazev, A. S., Tartakovskii, B. D.: Abatement of radiation from flexurally vibrating plates by means of active local vibration dampers. Soy. Phys. Acoust. 13 (1967) 115.

    Google Scholar 

  • Konovalyuk, I. P.: Diffraction of a plane sound wave by a plate reinforced with stiffness members. Sov. Phys. Acoust. 14 (1969) 465–469.

    Google Scholar 

  • Konovalyuk, I. P., Krasil’nikov, B. H.: Influence of a stiffness member on the reflection of a plane sound wave from a thin plate. LGI Collective Publications No. 4, 1965.

    Google Scholar 

  • kouzov, D. P.: Resonance effect in the diffraction of an underwater sound wave by a system of cracks in a plate. Prikl. Matem. Mekhan. 28 (1964) 409–417.

    MathSciNet  Google Scholar 

  • Krasil’ntkov, V. N.: Refraction of Flecure Waves. Soy. Phys. Acoust. 8 (1962) 58; Scattering of flexure waves on an inhomogeneous elastic plate. Soy. Phys. Acoust. 8 (1962) 141.

    Google Scholar 

  • kudryavtseva, T. D.: Transmissivity density distribution function for a two-layer system with a random parameter. Soy. Phys. Acoust. 13 (1968) 389.

    Google Scholar 

  • kuetze, G., bolt, R. H.: On the interaction between plate bending waves and their radiation load. Acustica 9 (1959) 238.

    Google Scholar 

  • Kur’yanov, B. F.: Spatial correlation of fields emitted by random sources on a plane. J.A.S.A. 9 (1964) 360.

    Google Scholar 

  • lamb, G. L., jr.: Input impedance of a beam coupled to a plate. J.A.S.A. 33 (1961) 628.

    MathSciNet  Google Scholar 

  • Laura, P. A., Saffell, B. F., jr.: Study of small-amplitude vibrations of clamped rectangular plates using polynomial approximations. J.A.S.A. 41 (1967) 836.

    Google Scholar 

  • Liamshev, L. M.: Diffraction of sound upon a thin bounded plate in liquid. Soy. Phys. Acoust. 1 (1955) 145.

    Google Scholar 

  • Lindh, G.: The transmission and reflection of an exponential shock wave impinging on a homogeneous elastic plate immersed in a liquid. Acustica 5 (1955) 257.

    Google Scholar 

  • Lyapünov, V. T.: Vibration isolation of articulated joints. Soy. Phys. Acoust. 13 (1967) 201.

    Google Scholar 

  • Lyon, R. H.: Noise reduction of rectangular enclosures with one flexible wall. J.A.S.A. 35 (1963) 1791.

    Google Scholar 

  • Lysanov, Y. P.: The edge effect in a large radiator. Sov. Phys. Acoust. 10 (1964) 165.

    Google Scholar 

  • Magrab, E. B., Reader, W. T.: Farfield radiation from an infinite elastic plate excited by a transient point loading. J.A.S.A 44 (1968) 1623.

    Google Scholar 

  • Maidanrk, G.: Response of ribbed panels to reverberant acoustic fields. J.A.S.A. 34 (1962) 809.

    Google Scholar 

  • Maidanik, G., Kerwin, E. M., JR.: Influence of fluid loading on the radiation from infinite plates below the critical frequency. J.A.S.A. 40 (1966) 1034.

    Google Scholar 

  • Mangiarotty, R. A.: Acoustic radiation damping of vibrating structures. J.A.S.A. 35 (1963) 369.

    Google Scholar 

  • Maslov, V. P.: Oblique incidence of a flexural wave in a plate on a slender obstacle. Sov. Phys. Acoust. 13 (1968) 344.

    Google Scholar 

  • Meitzler, A. H.: Mode coupling occurring in the propagation of elastic pulses in wires. J.A.S.A. 33 (1961) 435.

    Google Scholar 

  • Mowbray, D. F., Anderson, G. L.: Free vibrations of an infinite plate based on the linear coupled theory of thermoelasticity. J.A.S.A. 45 (1969) 646.

    Google Scholar 

  • Nariboli, G. A., Tsai, Y. M.: Asymptotic nature of extensional waves in an infinite elastic plate. J.A.S.A. 47 (1970) 857.

    Google Scholar 

  • Nayak, P. R.: Line admittance of infinite isotropic fluid loaded-plates. J.A.S.A. 47 (1970) 191–202.

    Google Scholar 

  • Nikiforov, A. S.: Radiation from damped plates. Soy. Phys. Acoust. 9 (1963) 197;

    Google Scholar 

  • Nikiforov, A. S.: Excitation of directional flexure waves in plates. Soy. Phys. Acoust. 9 (1964) 311;

    Google Scholar 

  • Nikiforov, A. S.: Impedance of an infinite plate with respect to a force acting in its plane. Sov. Phys. Acoust. 14 (1968) 247.

    Google Scholar 

  • Novlkov, A. K.: Spatial correlation of plane bending waves. Soy. Phys. Acoust. 7 (1962) 374.

    Google Scholar 

  • Onoe, M.: Contour vibrations of thin rectangular plates. J.A.S.A. 30 (1958) 1159;

    Google Scholar 

  • Onoe, M.: Gravest contour vibration of thin anisotropic circular plates. J.A.S.A. 30 (1958) 634.

    Google Scholar 

  • Ostergaard, P. B., Cardinell, R. L., Goodfriend, L. S.: Transmission loss of leaded building materials. J.A.S.A. 35 (1963) 837.

    Google Scholar 

  • Pachner, J.: Pressure distribution in the acoustical field excited by a vibrating plate. J.A.S.A. 21 (1949) 617.

    MathSciNet  Google Scholar 

  • Pal’tov, V. A., Pdpyrev, V. A.: Vibration and sound radiation of a plate under random loading. Sov. Phys. Acoust. 13 (1967) 210.

    Google Scholar 

  • Petritskaya, I. G., Semyakin, F. V.: Correspondence between the theoretical and experimental values of the impedance of a thin layer of air. Sov. Phys. Acoust. 13 (1968) 396.

    Google Scholar 

  • Price, A. J., Crocker, M. J.: Sound transmission through double panels using statistical energy analysis. J.A.S.A. 47 (1970) 683.

    Google Scholar 

  • Pretlove, A. J.: Note on the virtual mass for a panel in an infinite baffle. J.A.S.A. 38 (1965) 266.

    Google Scholar 

  • Raske, T. F., Schlack, A. L., JR.: Dynamic response of plates due to moving loads. J.A.S.A. 42 (1967) 625.

    Google Scholar 

  • Rybak, S. A.: Sound transmission through a periodically inhomogeneous plate in a liquid. Soy. Phys. Acoust. 8 (1962) 83.

    Google Scholar 

  • Rybak, S. A., Tartakovskii, B. D.: On the vibrations of thin plates. Soy. Phys. Acoust. 9 (1963) 51.

    MathSciNet  Google Scholar 

  • Scnocn, A.: Der Schalldurchgang durch Platten. Acustica, Beihefte 2 (1952) 1;

    Google Scholar 

  • Scnocn, A.: Seitliche Versetzung eines total reflektierten Strahls bei Ultraschallwellen. Acustica, Beihefte 2 (1952) 18.

    Google Scholar 

  • Shahady, P. A., PASSARELLI, R., LAURA, P. A.: Application of complex-variable theory to the determination of the fundamental frequency of vibrating plates. J.A.S.A. 42 (1967) 806.

    MATH  Google Scholar 

  • Sheinman, L. E., Shenderov, E. L.: Transmission of a sound pulse through a thin plate at oblique incidence. Sov. Phys. Acoust. 15 (1970) 368–374.

    Google Scholar 

  • Shenderov, E. A.: Transmission of sound through a thin plate with interjacent supports. Sov. Phys. Acoust. 9 (1964) 289.The Wave Equation in Spherical Coordinates and Its Solutions 741

    Google Scholar 

  • Sirotyuk, M. G.: Transformation of longitudinal acoustic oscillations into shear or torsional oscillations. Sov. Phys. Acoust. 5 (1959) 259.

    Google Scholar 

  • Skudrzyk, E. J.: Sound radiation of a system with a finite or an infinite number of resonances. J.A.S.A. 30 (1958) 1152.

    Google Scholar 

  • Smith, P. W., Jr.:Minimum axial phase velocity shells. J.A.S.A. 30 (1958) 140.

    Google Scholar 

  • Thompson, W., JR., Rattayya, J. V.: Acoustic power radiated by an infinite plate excited by a concentrated moment. J.A.S.A. 36 (1964) 1488.

    Google Scholar 

  • Torvik, P. J.: Reflection of wave trains in semi-infinite plates. J.A.S.A. 41 (1967) 346.

    Google Scholar 

  • Tsakonas, S., Chen, C. Y., Jacobs, W. R.: Acoustic radiation of an infinite plate excited by the field of a ship propeller. J.A.S.A. 36 (1964) 1708.

    Google Scholar 

  • Twersky, V.: On the nonspecular reflection of sound from planes with absorbent bosses. J.A.S.A. 23 (1951) 336.

    MathSciNet  Google Scholar 

  • Tyutekin, V. V.: Flexural oscillations of a circular elastic plate loaded at the center. Sov. Phys. Acoust. 6 (1961) 389;

    Google Scholar 

  • Tyutekin, V. V.: Reflection and refraction of flexure at the boundary of separation formed by two plates. J.A.S.A. 8 (1962) 180.

    Google Scholar 

  • Tyutekin, V. V., Shxvarnikoy, A. P.: Propagation of flexural waves in an inhomo geneous plate with smoothly varying parameters. Soy. Phys. Acoust. 10 (1965) 402.

    Google Scholar 

  • Usoskin, G. I.: Scattering of flexural waves by a system of point obstacles. Soy.Phys. Acoust. 13 (1967) 83.

    Google Scholar 

  • Young, J. E.: Transmission of sound through thin elastic plates. J.A.S.A. 26 (1954) 485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Sound Propagation in Ideal Channels and Tubes. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics