Zusammenfassung

Unter dem Sammelbegriff Cyclite versteht man nach Micheel (171), welcher diesen Namen geprägt hat, isozyklische Polyalkohole, deren Hydroxylgruppen an die Ringkohlenstoffe gebunden sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    Ackermann, D. und G. Hoppe-Seyler: Asterit, ein neuer biologischer Cyclit (Cyclohexanolmonomethyläther). Z. physiol. Chem. 336, 1 (1964).Google Scholar
  2. 2.
    Adams, R., D. C. Pease and J. H. Clark: Isolation of Cannabinol, Cannabidiol and Quebrachitol from Red Oil of Minnesota Wild Hemp. J. Amer. Chem. Soc. 62, 2194 (1940).Google Scholar
  3. 3.
    Adhikari, S. K., R. A. Bell and W. E. Harvey: Cyclitols from the Heartwood of Phyllocladus trichomannoides. J. Chem. Soc. ( London ) 1962, 2829.Google Scholar
  4. 4.
    Agranoff, B. W., R. M. Bradley and R. O. Brady: The Enzymatic Synthesis of Inositol Phosphatide. J. Biol. Chem. 233, 1077 (1958).Google Scholar
  5. 5.
    Ahuja, J. N.: Thesis, Michigan State Univ., East Lansing, 1962.Google Scholar
  6. 6.
    Anderson, L. and R. H. Coots: Metabolism of 2-14C-myo-Inositol in the Rat. Biochim. Biophys. Acta 28, 666 (1958).Google Scholar
  7. 7.
    Anderson, L. and G. G. Post: Catalytic Air Oxidation of Cyclitols and some Observations on the Hydrogenolysis of Inososes. Abstr. 134th Meeting Amer. Chem. Soc., Chicago, p. 12D (1958).Google Scholar
  8. 8.
    Anderson, L., R. Takeda, S. J. Angyal and D. J. Mchugh: Cyclitol Oxidation by Acetobacter suboxydans. II. Additional Cyclitols and the „Third Specificity Rule”. Arch. Biochem. Biophys. 78, 518 (1958).Google Scholar
  9. 9.
    Anderson, L., K. Tomita, P. Kussi and S. Kirkwood: On the Cyclitol Oxidizing Enzyme System of A cetobacter suboxydans. J. Biol. Chem. 204, 769 (195é).Google Scholar
  10. 10.
    Anderson, R. J. and E. G. Roberts: The Chemistry of the Lipoids of Tubercle Bacilli. XXI. The Polysaccharide Occurring in the Phosphatide from the Human Tubercle Bacilli. J. Amer. Chem. Soc. 52, 5023 (1930).Google Scholar
  11. 11.
    Angyal, S. J. and L. Anderson: The Cyclitols. Adv. Carbohydrate Chem. 14, 135 (1959).Google Scholar
  12. 12.
    Angyal, S. J., P. T. Gilham and C. G. Macdonald: Methyl Ethers of myoinositol. J. Chem. Soc. ( London ) 1957, 1417.Google Scholar
  13. 13.
    Ansell, G. B. and J. N. Hawthorne: Phospholipids. Amsterdam: Elsevier. 1964.Google Scholar
  14. 14.
    Appel, H. H. and E. Lobos: (+)-Pinitol in Adesmia Species from Chile. Scientia 29, 33 (1962) [Chem. Abstr. 60, 5613 (1964)].Google Scholar
  15. 15.
    Ata, S., J. Ito and N. Iso: The Effect of Inositol on the Growth and Metabolism of the Tubercle Bacillus. Nagoya J. Med. Sci. 14, 77 (1951).Google Scholar
  16. 16.
    Ballou, C. E.: Inositol and Related Compounds (Cyclitols). In: W. Ruhland etal., Encyclopedia of Plant Physiology, Vol. X, p. 442. Berlin-Heidelberg-Göttingen: Springer. 1958.Google Scholar
  17. 17.
    Ballou, E. and A. B. Anderson: On the Cyclitols Present in Sugar Pine (Pinus lambertiana Dougl.). J. Amer. Chem. Soc. 75, 648 (1953).Google Scholar
  18. 17a.
    Bannister, B. and A. D. Argoudelis: The Chemistry of Bluensomycin. I. The Structure of Bluensidine. J. Amer. Chem. Soc. 85, 119 (1963).Google Scholar
  19. 17b.
    Bannister, B. and A. D. Argoudelis: The Chemistry of Bluensomycin. II. The Structure of Bluensomycin. J. Amer. Chem. Soc. 85, 234 (1963).Google Scholar
  20. 18.
    Bauer, H. und H. Moll: Über die Inhaltsstoffe der Sheanüsse, der Samen von Butyrospermum Parkii. Arch. Pharmaz. 280, 37 (1942).Google Scholar
  21. 18a.
    Berman, T. and B. Magasanik: The Pathway of myo-Inositol Degradation in Aerobacter aerogenes. Dehydrogenation and Dehydration. J. Bié. Chem. 241, 800 (1966).Google Scholar
  22. 18b.
    Berman, T. and B. Magasanik: The Pathway of wyo-Inositol Degradation in Aerobacter aerogenes. Ring Scission. J. Biol. Chem. 241, 807 (1966).Google Scholar
  23. 19.
    Berthelot, M.: Sur quelques matieres sucröes. Ann. chim. phys. 46, 76 (1856).Google Scholar
  24. 20.
    Bhattacharji, S., V. N. Sharma and M. L. Dhar: Chemical Examination of the Roots of Cissampelos pareira. J. Sci. Industr. Res. (India) 11B, 81 (1952).Google Scholar
  25. 21.
    Bien, S. and D. Ginsburg: The Structure of Bornesitol. J. Chem. Soc. ( London ) 1958, 3189.Google Scholar
  26. 22.
    Boehm, R.: Über Curare und Curarealkaloide. Arch. Pharmaz. 235, 660 (1897).Google Scholar
  27. 23.
    Bourquelot, E. et A. Fichtenholz: Presence de la quebrachite dans les feuilles de Grevillea robusta A. Cunn. C. R. hebd. stances Acad. Sci. 155, 615 (1912).Google Scholar
  28. 24.
    Bourquelot, E. et H. Hürissey: Application de la méthode biochimique a l’etude des feuilles d’Hakea laurina. Extraction d’un glucoside (arbutine) et de quebrachite. C.R hebd. Scéances Acad. Sci. 168, 414 (1919).Google Scholar
  29. 25.
    Bouveault, L.: De risomerie optique dans les corps ä chafnes fermées. Bull, soc. chim. France [3] n, 144 (1894).Google Scholar
  30. 26.
    Bouveng, H. and B. Lindberg: Low-molecular Carbohydrates in Algae. VII. Investigation of Fucus spiralis and Desmarestia aculeata. Acta Chem. Scand. 9, 168 (1955).Google Scholar
  31. 27.
    Bräutigam, W.: Über das Vorkommen von Vanillin im Korke. Pharmaz. Zentralh. 39, 685, 722 (1898).Google Scholar
  32. 28.
    Briggs, L. H., R. C. Cambie and J. L. Hoare: Chemistry of the Podocarpaceae. III. A New Lignan, seco-Isolariciresinol and Further Constituents of the Heart- wood of Podocarpus spicatus. Tetrahedron 7, 262 (1959).Google Scholar
  33. 29.
    Brockerhoff, H. and é. E. Ballou: Phosphate Incorporation in Brain Phosphoinositides. J. Biol. Chem. 237, 49 (1962).Google Scholar
  34. 30.
    Brown, R. J. and R. F. Serro: Isolation and Identification of O-a-D-Galactopyranosyl-minositol and of wyo-Inositol from Juice of the Sugar Beet (Beta vulgaris). J. Amer. Chem. Soc. 75, 1040 (1953).Google Scholar
  35. 31.
    Burns, J. J. and G. Ashwell: L-Ascorbic Acid. In: P. D. Boyer, H. Lardy and K. Myrbäck, The Enzymes, Vol. 3, p. 387. New York: Academic Press. 1960.Google Scholar
  36. 32.
    Burns, J. J., N. Trousof, C. Evans, N. Papadopoulos and B. W. Agranoff: Conversion of wyo-Inositol to D-Glucuronic Acid and L-Gulonic Acid in the Rat. Biochim. Biophys. Acta 33, 215 (1959).Google Scholar
  37. 33.
    Caldwell, A. G. and C. A. Black: Inositol Hexaphosphate. I. Quantitative Determination in Extracts of Soils and Manures. Soil Sci. Soc. Amer., Proc. 22, 290 (1958).Google Scholar
  38. 34.
    Caldwell, K. A.: Optically Active Inosamine and a Substituted Pinitol Glucoside. Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic60-2420 [Chem. Abstr. 55, 2496 (1961)].Google Scholar
  39. 35.
    Cambie, R. C. and B. F. Cain: Bark Extractives of Dacrydium cupressinum. New Zealand J. Sci. 3, 121 (1960).Google Scholar
  40. 36.
    Carter, H. E., J. R. Dyer, P. D. Shaw, K. L. Rinehart, JR. and M. Hichens: The Structure of Neamine. J. Amer. Chem. Soc. 83, 3723 (1961).Google Scholar
  41. 37.
    Castagne, E.: Beitrag zur chemischen Untersuchung der Liane,,Eiin“. 2. Mitt. Über die Gegenwart von Cyclohexanpentol in den Stengeln von „Efiri“. Congo 1934, 341 [Chem. Zbl. 1934, II, 76].Google Scholar
  42. 38.
    Castagne, E.: Beitrag zur chemischen Untersuchung der Liane,,Efiri“. 3. Mitt. Über die Gegenwart von inaktivem spaltbaren Inosit in den Stengeln von „Enri“. Congo 1934, I I 357 [Chem. Zbl. 1935, I, 583].Google Scholar
  43. 39.
    Charalampous, F. C.: Biochemical Studies on Inositol. II. Chemical Degradation of Inositol to Glyoxylic and Formic Acids. J. Biol. Chem. 225, 585 (1957).Google Scholar
  44. 40.
    Charalampous, F. C.: Biochemical Studies on Inositol. III. Biosynthesis of Inositol by Yeast. J. Biol. Chem. 225, 595 (1957)-Google Scholar
  45. 41.
    Charalampous, F.: Biochemical Studies on Inositol. V. Purification and Properties of the Enzyme that Cleaves Inositol to d-Glucuronic Acid. J. Biol. Chem. 234, 220 (1959).Google Scholar
  46. 42.
    Charalampous, F.: Biochemical Studies on Inositol. VI. Mechanism of Cleavage of Inositol to D-Glucuronic Acid. J. Biol. Chem. 235, 1286 (1960).Google Scholar
  47. 43.
    Charalampous, F. C. and P. Abrahams: Biochemical Studies on Inositol. I. Isolation of wyo-Inositol from Yeast ana its Quantitative Enzymatic Estimation. J. Biol. Chem. 225, 575 (1957).Google Scholar
  48. 44.
    Charalampous, F. C., S. Bumiller and S. Graham: The Site of Cleavage of wyo-Inositol by Purified Enzymes of Rat Kidney. J. Amer. élem. Soc. 80, 2022 (1958).Google Scholar
  49. 45.
    Charalampous, F. C. and C. Lyras: Biochemical Studies on Inositol. IV. Conversion of Inositol to Glucuronic Acid by Rat Kidney Extracts. J. Biol. Chem. 228, I (1957).Google Scholar
  50. 46.
    Charaux, C.: Sur la manne du Caroubier et le sucre retire de cette manne. Identite de éé sucre avec la pinite ou methyl-d-inosite. Bull. soc. chim. biol. (Paris) 4, 597 (1922).Google Scholar
  51. 47.
    Charollais. E. et éh. Posternak: Recherches sur la biochimie des cyclitols. IX. Contribution a l,etude du metabolisme du ms-inositol chez le Rat. Helv. Chim. Acta 48, 280 (1965).Google Scholar
  52. 48.
    Chaudhry, G. R. and M. L. Dhar: Chemical Examination of the Roots of Cyclea burmanii. J, Sci. Industr. Res. (India) 17B, 163 (1958).Google Scholar
  53. 49.
    Cheldelin, V. H. and R. J. Williams: The é Vitamin Content of Foods. Univ. Texas Publ. No. 4237, p. 105 (1942).Google Scholar
  54. 50.
    Chen, I. W. and F. C. Charalampous: A Soluble Enzyme System from Yeast which Catalyzes the Biosynthesis of Inositol from Glucose. Biochem. Biophys. Res. Comm. 12, 62 (1963).Google Scholar
  55. 51.
    Chen, I. W. and F. C. Charalampous:Mode of Conversion of Glucose-6-P to Inositol and the Role of DPN and NHt Ions. Biochem. Biophys. Res. Comm. 17, 521 (1964).Google Scholar
  56. 52.
    Chen, I. W. and F. C. Charalampous: Biochemical Studies on Inositol. VII. Biosynthesis of Inositol by a Soluble Enzyme System. J. Biol. Chem. 239, 1905 (1964).Google Scholar
  57. 53.
    Chen, I. W. and F. C. Charalampous: Inositol I-Phosphate as Intermediate in the Conversion of Glucose 6-Phosphate to Inositol. Biochem. Biophys. Res. Comm. 19, 144 (1965).Google Scholar
  58. 54.
    Chen, I. W. and F. C. Charalampous: Biochemical Studies on Inositol. VIII. Purification and Properties of the Enzyme System which Converts Glucose 6-Phosphate to Inositol. J. Biol. Chem. 240, 3507 (1965).Google Scholar
  59. 55.
    Clark, E. P.: The Occurrence of Quebrachite in the Stems of Haplophyton cimicidum. J. Amer. Chem. Soc. 58, 1009 (1936).Google Scholar
  60. 56.
    Clark-Lewis, J. W., G. F. Katekar and P. I. Mortimer: Flavan Derivatives. IV. Teracacidin, a New Leucoanthocyanidin from Acacia intertexta. J. Chem. Soc. ( London ) 1961, 499.Google Scholar
  61. 57.
    Comollo, A. and A. K. Kiang: Dambonitol: its Isolation from Dyer a lown and Dyer a costulata and its Constitution. J. Chem. Soc. ( London ) 1953, 3319.Google Scholar
  62. 58.
    Cosgrove, D. J.: Forms of Inositol Hexaphosphate in Soils. Nature 194, 1265 (1962).Google Scholar
  63. 59.
    Cosgrove, D. J. and M. E. Tate: Occurrence of Wéo-Inositol Hexaphosphate in Soil. Nature 200, 568 (1963).Google Scholar
  64. 60.
    Courtois, J. E.: Les esters phosphoriques de l’mositol. Bull. soc. chim. biol. (Paris) 33, 1075 (1951).Google Scholar
  65. 61.
    Cron, M. J., D. L. Johnson, F. M. Palermiti, Y. Perron, H. D. Taylor, D. F. Whitehead and I. R. Hooper: Kanamycin. I. Characterization and Acid Hydrolysis Studies. J. Amer. Chem. Soc. 80, 752 (1958).Google Scholar
  66. 62.
    Dangschat, G.: In: K. Paech und M. V. Tracey, Moderne Methoden der Pflanzenanalyse. Bd. II, S. 64. Berlin-Heidelberg-Göttingen: Springer. 1955.Google Scholar
  67. 67.
    63.Dangschat, G.: Acetonierung und Konfiguration des meso-Inosits. Naturwiss. 30, 146 (1942).Google Scholar
  68. 64.
    Daughaday, W. H., J. Larner and C. Hartnett: The Synthesis of Inositol in the Immature Rat and Chick Embryo. J. Biol. Chem. 212, 869 (1955).Google Scholar
  69. 65.
    Dessaignes, V.: Recherches sur une matiére sucree particuliere, trouvee par M. Braconnot dans le gland du chene. C. R. hebd. seances Acad. Sci. 33, 308 (1851).Google Scholar
  70. 66.
    Dworsky, P. und é. Hoffmann-Ostenhof: Abbau von meso-Inosit durch intakte Zellen von Schwanniomyces occidentalis. Biochem. Z. 343, 394 (1965).Google Scholar
  71. 67.
    Eagle, H., B. W. Agranoff and E. E. Snell: The Biosynthesis of meso-Inositol by Cultured Mammalian Cells, and the Parabiotic Growth of Inositol-dependent and Inositol-independent Strains. J. Biol. Chem. 235, 1891 (1960).Google Scholar
  72. 68.
    Eagle, H., V. I. Oyama, M. Lévy and A. E. Freeman: myo-Inositol as an Essential Growth Factor for Normal and Malignant Human Cells in Tissue Culture. J. Biol. Chem. 226, 191 (1957).Google Scholar
  73. 69.
    Eastcott, E. V.: Wildiers Bios. The Isolation and Identification of „Bios I“. J. Physic. Chem. 32, 1094 (1928).Google Scholar
  74. 70.
    Eisenberg, F., Jr.: Biosynthesis of Inositol in the Mammal. In: H. Kindl, Cyclitols and Phosphoinositides. Oxford: Pergamon. 1966.Google Scholar
  75. 71.
    Eisenberg, F., JR. and A. H. Bolden: Biosynthesis of Inositol in Rat Testis Homogenate. Biochem. Biophys. Res. Commun. 12, 72 (1963).Google Scholar
  76. 72.
    Eisenberg, F., JR. and A. H. Bolden: Reproductive Tract as Site of Synthesis and Secretion of Inositol in the Male Rat. Nature 202, 599 (1964).Google Scholar
  77. 73.
    Eisenberg, F., JR. and A. H. Bolden: D-myo-Inositol-1 -phosphate, an Intermediate in the Biosynthesis of Inositol in the Mammal. Biochem. Biophys. Res. Commun. 21, 100 (1965).Google Scholar
  78. 74.
    Eisenberg, F., Jr., A. H. Bolden and F. A. Loewus: Inositol Formation by Cyclization of Glucose Chain in Rat Testis. Biochem. Biophys. Res. Comm. 14, 419 (1964).Google Scholar
  79. 74a.
    English, P. D., M. Dietz and P. Albersheim: Myoinositol Kinase: Partial Purification and Identification of Product. Science 151, 198 (1966).Google Scholar
  80. 74b.
    Enzyme Nomenclature — Recommendations 1964 of the International Union of Biochemistry. Amsterdam: Elsevier. 1965.Google Scholar
  81. 75.
    Erdtman, H.: The Phenolic Constituents of Pine Heartwood. IV. Membrane-forming Substance in Pine Heartwood. Svensk Papperstidn. 46, 226 (1943).Google Scholar
  82. 76.
    Erdtman, H.: The Phenolic Constuents of Pine Heartwood. VI. The Heartwood of Pinus cembra L. Svensk Kem. Tidskr. 56, 26 (1944).Google Scholar
  83. 77.
    Ewing, J., G. K. Hughes and E. Ritchie: A New Source of l-Quercitol (Viburnitol). Austral. J. Sci. Res. 3A, 514 (1950).Google Scholar
  84. 78.
    Fernández, é., G. Izquierdo and E. Martinez: Biological Origin of Rubber — Cyclases. Farm, nueva (Madrid) 9, 563 (1944) [Chem. Abstr. 40, 4115 (1946)].Google Scholar
  85. 79.
    Fernández, é., M. De Mingo and E. Martinez: Cyclization of Glucose. Farm, nueva (Madrid) 10, 541 (1945) [Chem, Abstr. 43, 4229 (1949)].Google Scholar
  86. 80.
    Finnemore, H., J. M. Cooper, M. B. Stanley, J. H. Cobcroft and L. J. Harris: The Cyanogenetic Constituents of Australian and Other Plants. J. Soc. Chem. Ind., Trans. 57, 162 (1938).Google Scholar
  87. 81.
    Fischer, H. O. L.: Chemical and Biological Relationships between Hexoses and Inositols. Harvey Lect. 40, 156 (1944–45).Google Scholar
  88. 82.
    Fletcher, H. G., Jr.: The Chemistry and Configuration of the Cyclitols. Adv. Carbohydrate Chem. 3, 45 (1948).Google Scholar
  89. 83.
    Fletcher, H. G., Jr., L. Anderson and H. A. Lardy: The Nomenclature of the Cyclohexitols and their Derivatives. J. Organ. Chem. (USA) 16, 1238 (1951).Google Scholar
  90. 84.
    Fleury, P., Balatre: Chimie et biochimie des inositols. Paris: Masson. 1947.Google Scholar
  91. 85.
    Folch, J. and D. W. Woolley: Inositol, a Constituent of a Brain Phosphatide. J. Biol. Chem. 142, 963 (1942).Google Scholar
  92. 86.
    Franzl, R. E. and E. Chargaff: Bacterial Enzyme Preparations Oxidizing Inositol and their Inhibition by Colchicine. Nature 168, 955 (1915).Google Scholar
  93. 87.
    Freinkel, N. and R. M. C. Dawson: The Synthesis of é-Inositol in Germ-free Rats and Mice. Biochem. J. 81, 250 (1961).Google Scholar
  94. 88.
    Frydman, R. B. and E. F. Neufeld: Synthesis of Galactosylinositol by Extracts from Peas. Biochem. Biophys. Res. Comm. 12, 121 (1963).Google Scholar
  95. 89.
    Girard, A.: Note sur un nouveau principe volatil et sucr6 trouve dans le caoutchouc du Gabon. C. R. hebd. sceances Acad. Sci. 67, 820 (1868).Google Scholar
  96. 90.
    Girard, A.: Sur un nouveau principe volatil et sucré trouvé dans le caoutchouc de Bornéo. C. R. hebd. Scéances Acad. Sci. 73, 426 (1871).Google Scholar
  97. 91.
    Girard, A.: Sur une nouvelle matière volatile, extraite du caoutchouc de Madagascar. C. R. hebd. sceances Acad. Sci. 77, 995 (1873).Google Scholar
  98. 92.
    Goldschmid, O. and H. L. Hergert: Examination of Western Hemlock for Lignin Precursors. Tappi 44, 858 (1961).Google Scholar
  99. 93.
    Goldstone, J. M. and B. Magasanik: Inositol Dehydrogenase and Ketoinositol Dehydrase from Inositol-adapted Aerobacter aero genes. Federat. Proc. (Amer. Soc. Exp. Biol.) 13, 218 (1954).Google Scholar
  100. 94.
    Goodson, J. A.: Constituents of the Leaves of Helinus ovatus. J. Chem. Soc. (London) 117, 140 (1920).Google Scholar
  101. 95.
    Goodson, J. A.: The Constituents of the Flowering Tops of Artemisia afra J acq. Biochem. J. 16, 489 (1922).Google Scholar
  102. 96.
    Gorin, P. A. J., K. Horitsu and J. F. T. Spencer: Formation of O-ß-D- Glucopyranosyl- and O-ß-D-Galactopyranosyl-myo-inositols by Glycosyl Transfer. Canad. J. Chem. 43, 2259 (1965).Google Scholar
  103. 97.
    Grosheintz, J. M. and H. O. L. Fischer: Cyclization of 6-Nitrodesoxyaldohexoses to Nitrodesoxyinositols. J. Amer. Chem. Soc. 70, 1479 (1948).Google Scholar
  104. 98.
    Haar, A. W. van der: Über das Vorkommen von d-Quercit in den Samenkernen von Achras sapota L. Ree. trav. chim. Pays-Bas 41, 784 (1922).Google Scholar
  105. 99.
    Hallett, F. P. and L. M. Parks: The Isolation of l-Inositol from Euphorbia pilulifera. J. Amer. Pharm. Assoc. 40, 474 (1951).Google Scholar
  106. 100.
    Halliday, J. W. and L. Anderson: The Synthesis of myo-Inositol in the Rat. J. Biol. Chem. 217, 797 (1955).Google Scholar
  107. 101.
    Hann, R. M. and E. Sando: Scyllitol from Flowering Dogwood (Cornus florida). J. Biol. Chem. 68, 399 (1926).Google Scholar
  108. 102.
    Haskell, H., J. C. French and Q. R. Bartz: Paromomycin. I. Paromamine, a Glycoside of D-Glucosamine. J. Amer. Chem. Soc. 81, 3480 (1959).Google Scholar
  109. 103.
    Hauser, G. and V. N. Finelli: The Biosynthesis of Free and Phosphatide myo-Inositol from Glucose by Mammalian Tissue Slices. J. Biol. Chem. 238, 3224 (1963).Google Scholar
  110. 104.
    Helleu, C.: ißtude de l’ölimination urinaire du meso-inositol en fonction du regime alimentaire. Bull. soc. chim. biol. (Paris) 39, 633 (1957).Google Scholar
  111. 105.
    Hürissey, H. et G. Poirot: Extraction, des feuilles de Viburnum tinus L., d’un principe immédiat cristallis, le viburnitol. C. R. hebd. sceances Acad. Sci. 203, 466 (1936).Google Scholar
  112. 106.
    Herken, H., D. Maibauer und F. Weygand: Über den Stoffwechsel von meso-Inosit. Z. Naturforsch. 12b, 598 (1957).Google Scholar
  113. 107.
    Heyns, K. und H. Paulsen oxydative Umwandlungen an Kohlenhydraten. VIII. Katalytische Oxydation von meso-Inosit zu scyllo-meso-Inosose. Chem. Ber. 86, 833 (1953).Google Scholar
  114. 108.
    Hichens, M. and K. L. Rinehart, Jr.: Chemistry of the Neomycins. XII. The Absolute Configuration of Deoxystreptamine in the Neomycins, Paromomycins and Kanamycins. J. Amer. Chem. Soc. 85, 1547 (1963).Google Scholar
  115. 108a.
    Hokin, L. E. and M. R. Hokin: The Chemistry of Cell Membranes. Scient. American 213, No. 4, 78 (1965).Google Scholar
  116. 109.
    Horii, S.: Chemistry of Zygomycin A. Structure of Zygomycin A1 Zygomycin A2 and Dextromycin. J. Antibiotics (Tokyo) A15, 187 (1962) [Chem. Abstr. 58, 9217 (1963)].Google Scholar
  117. 110.
    Horner, W. H.: Biosynthesis of Streptomycin. II. myoinositol, a Precursor of the Streptidine Moiety. J. Biol. Chem. 239, 2256 (1964).Google Scholar
  118. 111.
    Howard, C. F.: The Catabolism of wyo-Inositol-2-14C by Rat Kidney Homogenates and Slices. Thesis, Univ. Wisconsin, Madison. 1963 [Chem. Abstr. 60, 16303 (1964)].Google Scholar
  119. 112.
    Hübscher, G. and J. N. Hawthorne: The Isolation of Inositol Monophosphate from Liver. Biochem. J. 67, 523 (1957).Google Scholar
  120. 113.
    Huggins, C. G. and D. V. Cohn: Studies Concerning the Composition, Distribution and Turnover of Phosphorus in a Phosphatido-Peptide Fraction from Mammalian Tissue. J. Biol. Chem. 234, 257 (1959).Google Scholar
  121. 114.
    Hughes, G. K., F. P. Kaiser, N. Matheson and E. Ritchie: The Constituents of Legnephora moorei. Austral. J. Chem. 6, 90 (1953).Google Scholar
  122. 115.
    Imai, Y.: Biosynthesis of myé-Inositol in the Rat. J. Biochemistry (Tokyo) 53, 50 (1963).Google Scholar
  123. 116.
    Irani, R. J. and K. Ganapathi: myo-Inositol in the Biosynthesis of Benzylpenicillin by the Mycelial Suspensions of Penicillium chrysogenum. Experientia 15, 22 (1959).Google Scholar
  124. 117.
    Itallie, L. van and A. J. Steenhauer: Investigations of the Bark of Tiliacora acuminata Miers. Pharm. Weekbl. 59, 1381 (1922).Google Scholar
  125. 118.
    Janke, R. G., C. Jungwirth, I. B. Dawid und O. Hoffmann-Ostenhof: Über den oxydativen Abbau von myo-Inosit durch einige Sproßpilzarten. Monatsh. Chem. 90, 382 (1959).Google Scholar
  126. 118a.
    Johnson, A. L., R. H. Gourlay, D. S. Tarbell and R. L. Autrey: The Chemistry of Actinamine. J. Organ. Chem. (USA) 28, 300 (1963).Google Scholar
  127. 119.
    Jong, A. W. K. de: La présence de québrachite dans le latex de Hevea brasiliensis. Ree. trav. chim. Paysbas 25, 48 (1906).Google Scholar
  128. 120.
    Jong, A. W. K. de: La presence de la diméthylinosite inactive dans le latex de Melaboeai de Sumatra. Ree. trav. chim. Pays-Bas 27, 257 (1908).Google Scholar
  129. 121.
    Kabat, E. A., D. L. Macdonald, é. E. Ballou and H. O. L. Fischer: On the Structure of Galactin 1. J. Amer. Chem. Soc. 75, 4507 (1953).Google Scholar
  130. 122.
    Karyone, M. Takahashi, K. Isoi and M. Yoshikura: Chemical Constituents of the Plant of Coniferae and Allied Orders. XX. Components of the Leaves of Metasequoia glytostroboides (1). J. Pharmac. Soc. Japan 78, 801 (1958).Google Scholar
  131. 123.
    Keppler, H. H.: The Isolation and Constitution of Mollisacacidin, a New Leucoanthocyanidin from the Heartwood of Acacia mollissima Wilid. J. Chem. Soc. ( London ) 1957, 2721.Google Scholar
  132. 124.
    Kindl, H.: Biosynthesis of meso-Inositol in Microorganisms and Higher Plants. In: H. Kindl, Cyclitolsand Phosphoinositides, p. 15. Oxford: Pergamon. 1966.Google Scholar
  133. 125.
    Kindl, H.: Unveröffentlicht.Google Scholar
  134. 126.
    Kindl, h., j. Biedl-Neubacher und é. Hoffmann-Ostenhof: Untersuchungen über aie Biosynthese der Cvclite. IX. Überführung von D-Glucose und D-Glucose-6-phosphat in meso-Inosit durch einen zellfreien Extrakt aus Candida utilis. Biochem. Z. 341, 157 (1965).Google Scholar
  135. 127.
    Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. II. Bildung von meso-Inosit aus Glucose-1–14 in Sinapis alba und selektiver Abbau des so entstandenen markierten Produktes. Biochem. Z. 339, 374 (1964).Google Scholar
  136. 128.
    Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. IV. Bildung von meso-Inosit-5-14C aus Glucose-2-14C. Monatsh. Chem. 95, 548 (1964).Google Scholar
  137. 129.
    Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XI. Der Ursprung des meso-Inosit-Anteils der Phytinsäure in höheren Pflanzen. Biochem. Z. 345, 454 (1966).Google Scholar
  138. 130.
    Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XII. Die Bildung von D-Ononit und anderen Cycliten in Ononis spinosa. Z. physiol Chem. 345, 257 (1966).Google Scholar
  139. 131.
    Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XIII. Vorkommen und Biosynthese von Cycliten in Asclepiadaceae. Phytochem. (im Druck).Google Scholar
  140. a. Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XIV. Die Bildung von L-Viburnit in Chrysanthemum leucanthemum. Phytochem. (im Druck).Google Scholar
  141. b. Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XVI. Bildung von D-Bornesit in Boraginaceae und Leguminosae. Monatsh. Chem. (im Druck).Google Scholar
  142. c. Kindl, H. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XVII. Bildung von D-Bornesit und Dambonit in Nerium oleander. Monatsh. Chem. (im Druck).Google Scholar
  143. 131.
    d. Kindl, H., G. J. Kremlicka und O. Hoffmann-Ostenhof: L-Leucanthemit als Inhaltsstoff von Gymnospermae. Monatsh. Chem. (im Druck).Google Scholar
  144. e. Kindl, H., R. Scholda und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. XV. Zur Bildung von L- Quercit in Quercus-Arten. Phytochem. (im Druck).Google Scholar
  145. 132.
    King, F. E. and L. Jurd: The Chemistry of Extractives from Hardwoods. XII. The Cyclitols and Steroids from Opepe (Sarcocephalus duterrichu) J. Chem. Soc. ( London ) 1953, 1192.Google Scholar
  146. 133.
    King, F. E. and T. J. King: Taxiresinol (é’-Demethylzlisolariciresinol), a New Lignan Extracted from the Heartwood of the English Yew, Taxus baccata. J. Chem. Soc. ( London ) 1952, 17.Google Scholar
  147. 134.
    Klenk, E. und R. Sakai: Inositmonophosphorsäure, ein Spaltprodukt der Sojabohnenphosphatide. Z. physiol. Chem. 258, 33 (1939).Google Scholar
  148. 135.
    Kluyver, A. J., T. Hof and A. G. J. Boezaardt: On the Pigment of Pseudomonas Beijerincfm. Enzymologia 7, 257 (1939).Google Scholar
  149. 136.
    Knowles, W. S. and R. C. Elderfield: Investigations on Loco Weeds. IV. A Preliminary Study of the Constituents of Astragalus wootoni. J. Organ. Chem. (USA) 7, 389 (1942).Google Scholar
  150. 137.
    Koepfli, J. B.: Chemical Investigation of Rauwolfia caffra. I. Rauwolfine. J. Amer. Chem. Soc. 54, 2412 (1932).Google Scholar
  151. 138.
    Kreitman, G., O. K. Sebek and F. F. Nord: On the Mechanism of Enzyme Action. XLIII. Chemistry and Interaction of Lycopersin in the Carbohydrate Fat Conversion by Fusarium vasinfectum. Arch. Biochem. Biophys. 28, 77 (1950).Google Scholar
  152. 139.
    Kremlicka, G. J. und O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. X. Reduktion von 5-O-Methyl-meso-inosose-3 durch Enzyme aus Trifolium incarnatum. Z. physiol. Chem. 344, 261 (1966).Google Scholar
  153. 140.
    Krishna, S. and B. S. Varma: Active Principle of Myrsine africana Linn. J. Indian Chem. Soc. 13, 115 (1936).Google Scholar
  154. 141.
    Krishna, S. and B. S. Varma: Active Principles of Embelia robusta Roxb., Myrsine semiserrata Wall, and M. capitella Wall. Forest Bull. ( Dehra Dun ) 1941, 102.Google Scholar
  155. 142.
    Kubler, K.: Beiträge zur Chemie der Kondurangérinde. Arch. Pharmaz. 246, 620 (1908).Google Scholar
  156. 143.
    Kuehl, F. A., Jr., M. N. Bishop and K. Folkers: Streptomyces Antibiotics. XXIII. 1,3-Diamino-4,5,6-tnhydroxycyclohexane from Neomycin A. J. Aer. Chem. Soc. 73, 881 (1951).Google Scholar
  157. 143.
    a. Kursanov, A. L., M. Vorobeva and E. Vyskrebentseva: meso-Inositol in Tea Leaves and its Formation Paths. Doklady Akad. Nauk (USSR) 68, 737 (1949) [Chem. Abstr. 44, 1568 (1950)].Google Scholar
  158. 144.
    Labarca, C., P. B. Nicholls and R. S. Bandurski: A Partial Characterization of Indoleacetylinositols from Zea mays. Biochem. Biophys. Res. Comm. 20, 641 (1965).Google Scholar
  159. 145.
    Larner, J., W. T. Jackson, D. J. Graves and J. R. Stamer: Inositol Dehydrogenase from A erobacter aero genes. Arch. Biochem. Biophys. 60, 352 (1956).Google Scholar
  160. 146.
    Lee, L. S. and N. J. Morris: Isolation and Identification of Pinitol from Peanut Flour. J. Agr. Food Chem. 11, 321 (1963) [Chem. Abstr. 59, 5701 (1963)].Google Scholar
  161. 147.
    Lemieux, R. U. and M. L. Wolfrom: The Chemistry of Streptomycin. Adv. Carbohydrate Chem. 3, 337 (1948).Google Scholar
  162. 148.
    Lindberg, B.: Low-molecular Carbohydrates in Algae. XI. Investigation of Porphyr a umbilicalis. Acta Chem. Scand. 9, 1097 (1955).Google Scholar
  163. 149.
    Lindberg, B.: Methylated Taurines and Choline Sulphate in Red Algae. Acta Chem. Scand. 9, 1323 (1955).Google Scholar
  164. 150.
    Lindberg, B. and J. McPherson: Low-molecular Carbohydrates in Algae. V. Investigation of Laminaria cloustoni. Acta Chem. Scand. 8, 1547 (1954).Google Scholar
  165. 151.
    Lindberg, B. and J. McPherson: Low-molecular Carbohydrates in Algae. VI. Laminitol, a New C-Methyl Inositol from Laminaria cloustonii. Acta Chem. Scand. 8, 1875 (1954).Google Scholar
  166. 152.
    Lindstedt, G.: Constituents of Pine Heartwood. XIV. The Heartwood of Pinus monticola Douglas. Acta Chem. Scand. 3, 1147 (1949).Google Scholar
  167. 153.
    Lindstedt, G.: Constituents of Pine Heartwood. XV. The Heartwood of Pinus excelsa Wall. Acta Chem. Scand. 3, 1375 (1949).Google Scholar
  168. 154.
    Lippmann, E. O.: Über ein Vorkommen von Chinasäure. Ber. dtsch. chem. Ges. 34, 1159 (1901).Google Scholar
  169. 155.
    Loewus, F. A.: Inositol Metabolism in Plants. II. The Absolute Configuration of D-Xylose-5-t1 Derived Metabolically from myé-Inositol-2-t in the Ripening Strawberry. Arch. Biochem. Biophys. 105, 590 (1964).Google Scholar
  170. 156.
    Loewus, F. A.: Inositol Metabolism and Cell Wall Formation in Plants. Federat. Proc. (Amer. Soc. Exp. Biol.) 24, 855 (1965).Google Scholar
  171. 157.
    Loewus, F. A.: Analytical Studies Using Low Levels of Carbon-14 and Tritium: A Method of Determining the Labeling Pattern in myo-Inositol. Adv. Tracer Methodology 2, 163 (1965).Google Scholar
  172. 158.
    Loewus, F. A. and S. Kelly: Conversion of Glucose to Inositol in Parsley Leaves. Biochem. Biophys. Res. Comm. 7, 204 (1962).Google Scholar
  173. 159.
    Inositol Metabolism in Plants. I. Labeling Patterns in Cell Wall Poly-saccharides from Detached Plants Given myo-Inositol-2-t or -2-14C. Arch. Biochem. Biophys. 102, 96 (1963).Google Scholar
  174. 160.
    Loewus, F. A., S. Kelly and E. F. Neufeld: Metabolism of WYO-Inositol in Plants. Conversion to Pectin, Hemicellulose, D-Xylose and Sugar Acids. Proc. Nat. Acad. Sci. (USA) 48, 421 (1962).Google Scholar
  175. 161.
    Maeda, K., M. Murase, H. Mawatari and H. Umezawa: Degradation Studies on Kanamycin. J. Antibiotics (Tokyo) An, 73 (1958). [Chem. Abstr. 53, 20526 (1959)].Google Scholar
  176. 162.
    Magasanik, B.: Enzymatic Adaptation in the Metabolism of Cyclitols in A erobacter aerogenes. J. Biol. Chem. 205 1007 (1953).Google Scholar
  177. 163.
    Magasanik, B.: The Pathway of Inositol Dissimilation in A erobacter aerogenes. J. Biol. Chem. 205, 1019 (1953).Google Scholar
  178. 164.
    Magasanik, B. and E. Chargaff: The Stereochemistry of an Enzymatic Reaction: The Oxidation of I-, d- and epi-Inositol by Acetobacter suboxydans, J. Biol. Chem. 174, 173 (1948).Google Scholar
  179. 165.
    Magasanik, B., R. E. Franzl and E. Chargaff: The Stereochemical Specificity of the Oxidation of Cyclitols by Acetobacter suboxydans. J. Amer. Chem. Soc. 74, 2618 (1952).Google Scholar
  180. 166.
    Malangeau, P.: Sur les cyclohexitols presents dans l’urine humaine. Bull, soc. chim. biol. (Paris) 38, 729, (1956).Google Scholar
  181. 167.
    Mann, R. L. and D. O. Woolf: Hygromycin. III. Structure Studies. J. Amer. Chem. Soc. 79, 120 (1957).Google Scholar
  182. 167.
    a. Manni, P. E.: The Biochemistry of Semen, p. 189. London: Methuen. 1954.Google Scholar
  183. 167b.
    Manni, P. E. and J. E. Sinsheimer: Constituents from Gymnema sylvestre Leaves. J. Pharmac. Sci. 54, 1541 (1965).Google Scholar
  184. 168.
    Manske, R. H. F.: A New Source of Cocosité. Canad. J. Res. 19B, 34 (1941).Google Scholar
  185. 169.
    Maquenne, L.: Les sucres et principaux derives. Paris: Gauthier-Villars. 1900.Google Scholar
  186. 186.
    170.McComb, E. A. and V. V. Rendig: Ononitol (4-O-Methyl-wzyé-inositol) as a Constituent of Medicago sativa. Arch. Biochem. Biophys. 99, 192 (1962).Google Scholar
  187. 171.
    Micheel, F.: Übergang von der Hexosereihe in die Cyclitreihe. Liebigs Ann. Chem. 496, 77 (1932).Google Scholar
  188. 172.
    Mokranjac, M. S. and B. Medakoviö: Chemical Composition of Leaves of éme Tree. Acta Pharmac. Jugosl. 4, 143 (1954).Google Scholar
  189. 173.
    Moscatelli, E. A. and J. Larner: The Metabolism in the Rat of Photo- synthetically Prepared myé-Inositol-14C. Arch. Biochem. Biophys. 80, 26 (1959).Google Scholar
  190. 173a.
    Mosher, H. S., F. A. Fuhrman, H. D. Buchwald and H. G. Fischer: Tarichatoxin-Tetrodotoxin: A Potent Neurotoxin. Science 144, 1100 (1964).Google Scholar
  191. 174.
    Müller, H.: The Occurrence of Quercité in the Leaves of Chamaerops humilis. J. Chem. Soc. (London) 91, 1766 (1907).Google Scholar
  192. 175.
    Cocosité, a Constituent of the Leaves of Cocos nucifera and Cocos plumosa. J. Chem. Soc. (London) 91, 1767 (1907).Google Scholar
  193. 176.
    Murase, M.: Structural Studies on Kanamycin C. J. Antibiotics (Tokyo) A14, 367 (1961) [Chem. Abstr. 57, 9940 (1962)].Google Scholar
  194. 177.
    Naito, T.: Glebomycin, a New Member of the Streptomycin Class. IV. Structure of Glebomycin. Penishirin Sono é Koseibusshitsu 15, 373 (1962) [Chem. Abstr. 60, 4230 (1964)].Google Scholar
  195. 178.
    Neidhardt, F. C. and B. Magasanik: Effect of Mixtures of Substrates on the Biosynthesis of Inducible Enzymes in Aerobacter aerogenes. J. Bacteriol. 73, 260 (1957).Google Scholar
  196. 179.
    Neubacher, J., H. Kindl and O. Hoffmann-Ostenhof: Transformation of [2-14C] Glucose into meso- [5-14C] Inositol in a Cell-free Extract from Candida utilis. Biochem. J. 92, 56P (1964).Google Scholar
  197. 180.
    Nilsson, M.: Constituents of Pollen. I. Low-molecular Carbohydrates in Pollen from Pinusmontana Mill. Acta Chem. Scand. 10, 413 (1956).Google Scholar
  198. 181.
    Ottey, L. and F. Bernheim: A Comparison of the Factors which Affect the Formation of Adaptive Enzymes for Benzoic Acid and Inositol in a Mycobacterium. Enzymologia 17, 279 (1956).Google Scholar
  199. 182.
    Paranjapye, V. N. and J. V. Bhat: Studies of Microbial Metabolism of myoinositol. é. Noncyclic Pathway of wyé-Inositol Breakdown by Xanthomonas panici. J. Indian Inst. Sci. 43, 104 (1961).Google Scholar
  200. 183.
    Paulus, H. and E. P. Kennedy: The Enzymatic Synthesis of Inositol Mono- phosphatide. J. Biol. Chem. 235, 1303 (1960).Google Scholar
  201. 184.
    Pease, D., M. J. Reider and R. C. Elderfield: Investigations on Loco Weeds. II. The Isolation of é-Pinite from A stralgus é and from Oxytropis lambertii. J. Organ. Chem. (USA) 5, 198 (1940).Google Scholar
  202. 185.
    Petrie, J. M.: The Occurrence of Methyl β-inositol in an Australian Poisonous Plant. Proc. Linnean Soc. N. S. Wales 43, 850 (1918) [Chem. Abstr. 15, 3508 (1921)].Google Scholar
  203. 186.
    Plouvier, V.: Sur la presence de qu6brachitol dans quelques Sapindacees et Acéracées. R. hebd. sc6ances Acad. Sci. 224, 1842 (1947).Google Scholar
  204. 187.
    Plouvier, V.: Sur la recherche des itols et du saccharose chez quelques Sapindales. C. R. hebd. sceances Acad. Sci. 227, 85 (1948).Google Scholar
  205. 188.
    Plouvier, V.: Sur la recherche du qu6brachitol et de rallanto’ine chez les Arables et le Platane. C. R. hebd. sceances Acad. Sci. 227, 225 (1948).Google Scholar
  206. 189.
    Plouvier, V.: Sur la presence de pinitol dans quelques L6gumineuses. C. R. hebd. sceances Acad. Sci. 228, 859 (1949).Google Scholar
  207. 207.
    190, Plouvier, V.: Sur la presence de québrachitol dans quelques Artemisia (Composées). Ann. pharmac. Fran 97, 192 (1949).Google Scholar
  208. 191.
    Plouvier, V.: Nouvelles recherches sur le québrachitol des Sapindacees et Hippocastanacées, le dulcitol des Célastracees et le saccharose de quelques autres families. C. R. hebd. sceances Acad Sci. 228, 1886 (1949).Google Scholar
  209. 192.
    Plouvier, V.: Nouvelles recherches sur le pinitol des Lögumineuses. C. R. hebd. scöances Acad. Sci. 230, 125 (1950).Google Scholar
  210. 193.
    Plouvier, V.: Sur la presence de quebrachité chez les Elaeagnacées. Sa recherche dans quelques autres Myrtiflorae. C. R. hebd. sceances Acad. Sci. 232, 1239 (1951).Google Scholar
  211. 194.
    Plouvier, V.: Sur la recherche du pinitol chez quelques Coniföres et plantes voisines. C. R. hebd. sceances Acad. Sci. 234, 362 (1952).Google Scholar
  212. 195.
    Plouvier, V.: Sur le pinitol des Coniféres et le quebrachité des Acéracées; recherche de ces deux itols dans quelques autres families. C. R. hebd. sceances Acad. Sci.236, 317 (1953).Google Scholar
  213. 196.
    Plouvier, V.: Sur la recherche des itols et des héterosides du Gui, Viscum album L. (Loranthacées). C. R. hebd. sceances Acad. Sci. 237, 1761 (1953).Google Scholar
  214. 197.
    Plouvier, V.: Sur la presence de pinitol chez les Caryophyllacées et quelques plantes de families voisines. C. R. hebd. sceances Acad. Sci. 239, 1678 (1954).Google Scholar
  215. 198.
    Plouvier, V.: Sur la recherche du D-quercitol chez quelques Fagacées et autres plantes. C. R. hebd. sceances Acad. Sci. 240, 113 (1944).Google Scholar
  216. 199.
    Plouvier, V.: Sur un cyclitol nouveau, le liriodendritol, isole des Liriodendron (Magnoliacees). C. R. hebd. sceances Acad. Sci. 241, 765 (1955).Google Scholar
  217. 200.
    Plouvier, V.: Sur deux cyclitols nouveaux, le L-bornésitol isole de Laihyrus vernus Bernh., le D-ononitol isole d’Ononis Natrix L. (Legumineuses). C. R. hebd. sceances Acad. Sci. 241, 983 (1955).Google Scholar
  218. 201.
    Plouvier, V.: Nouvelles recherches sur le pinitol des Legumineuses. Sur la presence de équercitol dans le Pterocarpus lucens Guill. et Perr. C. R. hebd. sceances Acad. Sci. 241, 1838 (1955).Google Scholar
  219. 202.
    Plouvier, V.: Sur la recherche de quelques cyclitols: Yiburnitol, scyllitol, pinitol. C. R. hebd. sceances Acad. Sci. 242, 2389 (1956).Google Scholar
  220. 203.
    Plouvier, V.: Sur un cyclitol nouveau, le -pinitol, isoé Artemisia dracunculus L. C. R. hebd. sceances Acad. Sci. 243, 1913 (1956).Google Scholar
  221. 204.
    Plouvier, V.: Sur la recherche du pinitol chez quelques Caré)phyllacees, Magnoliacees et plantes de families voisines. C. R. hebd. sceances Acad. Sci. 244, 382 (1957).Google Scholar
  222. 205.
    Plouvier, V.: Sur la recherche du séquoyitol et du pinitol chez quelques Gymnospermes. C. R. hebd. sceances Acad. Sci. 245, 2377 (1957).Google Scholar
  223. 206.
    Plouvier, V.: Sur la recherche du bornesitol chez les Rhamnacees, Borraginacées et quelques autres families. C.R hebd. sceances Acad. Sci. 247, 2190 (1958).Google Scholar
  224. 207.
    Plouvier, V.: Sur la recherche des ethers methyliques des inositols dans quelques groupes botaniques. C. R. hebd. seances Acad. Sci. 247, 2423 (1958).Google Scholar
  225. 208.
    Plouvier, V.: Nouvelles recherches de cyclitols dans quelques groupes botaniques; signification phylogenique du sequoyitol. C. R. hebd. sceances Acad. Sci. 251, 131 (1960).Google Scholar
  226. 209.
    Plouvier, V.: Recherche de cyclitols chez quelques Apocynacees et Myrtacees; presence de L-quercité dans Yeucalyptus populnea F. Müll. C.R hebd. sceances Acad. Sci. 253, 3047 (1961).Google Scholar
  227. 210.
    Plouvier, V.: Sur un cyclitol nouveau, le,,leucanth6mitol“, isolé de la Grande Marguerite, Chrysanthemum leucanthemum L. Sa recherche dans quelques autres Composoes-Anthemidees. C. R. hebd. sceances Acad. Sci. 255, 360 (1962).Google Scholar
  228. 211.
    Plouvier, V.: Nouvelles recherches de cyclitols dans quelques groupes botaniques; le L-inosité des Composees, le D-pinité des Legumineuses. C.R hebd. sceances Acad. bei. 255, 1770 (1962).Google Scholar
  229. 212.
    Plouvier, V.: Distribution of Aliphatic Polyols and Cyclitols. In: T. Swain, chemical Plant Taxonomy, p. 313. London-New York: Academic Press. 1963.Google Scholar
  230. 213.
    Plouvier, V.: Recherche des L-inositol, Lquébrachité et D-pinitol dans quelques groupes botaniques. Presence de l’acide shikimique dans Mammea americana L. (Guttiferes). C. R. hebd. sceances Acad. Sci. 258, 2921 (1964).Google Scholar
  231. 214.
    Plouvier, V.: Sur la recherche des polyalcools et des neterosides cyanégenétiques chez quelques Proteacees. C. R. hebd. sceances Acad. Sci. 259, 665 (1964).Google Scholar
  232. 215.
    Plouvier, V.: Sur la rechercüe des polyalcools dans quelques groupes botaniques; le pinitol et le sequoyitol des Cycadacees. C. R. hebd. sceances Acad. Sci. 260, 1003Google Scholar
  233. (1965).
    Plouvier, V.: Sur la rechercüe des polyalcools dans quelques groupes botaniques; le pinitol et le sequoyitol des Cycadacees. C. R. hebd. sceances Acad. Sci. 260, 1003Google Scholar
  234. 216.
    Posternak, TH.: Recherches dans la serie des éé elites. VI. Sur la configuration de la meso-inosite, de la scyllite et d’un inosose obtenu par voie biochimique (scyllo-wsinosose). Helv. Chim. Acta 25, 746 (1942).Google Scholar
  235. 217.
    Posternak, TH.: The Cyclitols. Paris: Hermann. 1965.Google Scholar
  236. 218.
    Posternak, TH., A. Rapin et A.-L. Haenni: Recherches dans la serie des cyclitols. XXIV. Sur les regies d,éxydation des cyclitols par A cetobacter suboxydans. Helv. Chim. Acta 40, 1594 (1957).Google Scholar
  237. 219.
    Posternak, TH. et D. Reymond: Recherches dans la serie des cyclitols. XVII. Sur l’oxydation de divers cyclitols par A cetobacter suboxydans. Helv. Chim. Acta 36, 260 (1953).Google Scholar
  238. 220.
    Posternak, TH., W. H. Schopfer, Kaufmann-Boetsch et S. Edwards: Recherches sur la biochimie des cyclitols. VIII. Sur la biosynthese du meso- inositol et du scyllitol chez le Rat. Helv. Chim. Acta 46, 2676 (1963).Google Scholar
  239. 221.
    Posternak, TH., W. H. Schopfer et D. Reymond: Biochimie des cyclitols. I. Contribution a l’etude du metabolisme du wß’sé-inositol chez le Rat. Helv. Chim. Acta 38, 1283 (1955).Google Scholar
  240. 222.
    Posternak, TH., W. H. Schopfer, D. Reymond et é. LARK: Recherches sur la biochimie des cyclitols, V. Glucogenese a partir de wéo-inositols deutenes chez le Rat phloriziné. Helv. Chim. Acta 41, 235 (1958).Google Scholar
  241. 223.
    Power, F. B. and F. Tutin: A Laevorotatory Modification of Quercité. J. Chem. Soc. (London) 85, 624 (1904).Google Scholar
  242. 224.
    Qudrat-I-Khuda, Mt, M. E. Ali and Q. A. Ahmed: Caesalpinia bonducella. II. Chemical Examination of the Leaves. Pakistan J. Sci. Ind. Res. 4, 104 (1961) [Chem. Abstr. 58, 12367 (1963)].Google Scholar
  243. 225.
    Qudrat-I-Khuda, M., M. E. Ali and A. Malek: Caesalpinia bonducella. IV. é-Inositol from Caesalpinitol. Sci. Res. (Dacca, Pakistan) 1, 96 (1964) [Chem. Abstr. 61, 8558 (1964)].Google Scholar
  244. 226.
    Rendig, V. V. and E. A. McComb: Pinitol (5-O-Methyl-D-inositol) as a Constituent of Medicago sativa. Arch. Biochem. Biophys. 96, 455 (1962).Google Scholar
  245. 227.
    Richardson, K. E. and B. Axelrod: Changes in Inositol Content During Germination and Growth of Some Higher Plants. Plant Physiol. 32, 334 (1957).Google Scholar
  246. 228.
    Riggs, N. V.: The Nature of a Cyclitol Isolated from Macrozamia Riedlei. J. Chem. Soc. ( London ) 1949, 3199.Google Scholar
  247. 229.
    Rimington, C.: The Occurrence of Cyanogenetic Glucosides in South Aincan Species of Acacia. II. Determination of the Chemical Constitution of Acacipe- talin. Its Isolation from Acacia stolonifera Burch. Onderstepoort J. Vet. Sci. 5, 445 (1935).Google Scholar
  248. 230.
    Rimington, C. and G. C. S. Roets: Chemical Investigation of the Plant Acalypha indica. Isolation of Triacetonamine, a Cyanogenetic Glucoside, and Quebrachitol. Onderstepoort J. Vet. Sci. 9, 193 (1937).Google Scholar
  249. 231.
    Rinehart, K. L., JR., W. S. Chilton, M. Hichens and W. v. Phillipsborn: Chemistry of the Neomycins. XI. NMR Assignment of the Glycosidic Linkages. J. Amer. Chem. Soc. 84, 3216 (1962).Google Scholar
  250. 232.
    Rinehart, K. L., Jr., M. Hichens, A. D. Argoudelis, W. S. Chilton, H. E. Carter, M. P. Georgiadis, C. P. Schaffner and R. T. Schillings: Chemistry of the Neomycins. X. Neomycins é and C. J. Amer. Chem. Soc. 84, 3218 (1962).Google Scholar
  251. 233.
    Rowe, E. J., A. A. Harwood and D. B. Myers: The Isolation of Three Inositols from Veronia altissima. J. Amer. Pharmac. Assoc. 44, 308 (1955).Google Scholar
  252. 234.
    Sannie, C. et J. Dussy: Sur la presence de pinitol dans les feuilles d’Ery- throphleum guineense (G. Don). C. R. hebd. sceances Acad. Sci. 224, 1381 (1947).Google Scholar
  253. 235.
    Scheffer, F., R. Kickuth und H. Lorenz: Die Bedeutung von Inositphosphat bei der Aufnahme von Kalium durch Maispflanzen. Naturwiss. 52, 518 (1965).Google Scholar
  254. 236.
    Scherer, J.: Über eine neue aus dem Muskelfleisch gewonnene Zuckerart. Liebigs Ann. Chem. 73, 322 (1850).Google Scholar
  255. 236a.
    Scheuer, P. J.: The Chemistry of Toxins Isolated from Some Marine Organisms. Fortschr. Chem. organ. Naturstoffe 22, 265 (1964).Google Scholar
  256. 237.
    Schmitz, H., O.B. Fardig, F. A. O’herron, M. A. Rousche and I. R. Hooper: Kanamycin. III. Kanamycin B. J. Amer. Chem. Soc. 80, 2911 (1958).Google Scholar
  257. 238.
    Scholda, R.: Dissert., Univ. Wien, 1965.Google Scholar
  258. 239.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. I. Bildung von D-Pinit, D-Inosit und Sequoyit aus meso-Inosit in Blättchen von Trifolium incarnatum. Z. physiol. Chem. 335, 180 (1964).Google Scholar
  259. 240.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. III. Bildung von Methyläthern des L-Inosits aus meso-Inosit in Blättchen von Artemisia vulgaris und Artemisia dracunculus. Monatsh. Chem. 95, 541 (1964).Google Scholar
  260. 241.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. V. Weitere Versuche über die Bildung der einzelnen Cyclite in Blättchen von Trifolium incarnatum. Z. physiol. Chem. 337, 277 (1964).Google Scholar
  261. 242.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. VI. Die Bildung von Scyllit in Calycanthus occidentalis. Z. physiol. Chem. 339, 28 (1964).Google Scholar
  262. 243.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. VII. Der Mechanismus der Umwandlung von meso-Inosit in Methyläther des L-Inosits in Blättchen von Artemisia vulgaris und Artemisia dracunculus. Monatsh. Chem. 95, 1305 (1964).Google Scholar
  263. 244.
    Scholda, R., G. Billek and O. Hoffmann-Ostenhof: Untersuchungen über die Biosynthese der Cyclite. VIII. Der Mechnismus der Umwandlung von meso-Inosit in D-Pinit und D-Inosit in Trifolium incarnatum. Monatsh. Chem. 95, 1311 (1964).Google Scholar
  264. 244a.
    Schraudolf, H.: Untersuchungen zum Stoffwechsel des m-Inosits. Dissert. Tübingen, 1956.Google Scholar
  265. 245.
    Sherrard, E. C. and E. F. Kurth: Occurrence of Pinitol in Red wood. Ind. Eng. Chem. 20, 722 (1928).Google Scholar
  266. 246.
    Sequoyite, a Cyclose from Redwood (Sequoia sempervirens). J. Amer. Chem. Soc. 51, 3139 (1929).Google Scholar
  267. 247.
    Sivak, A. und O. Hoffmann-Ostenhof: Enzyme des meso-Inositabbaus in Schwanniom é é es occtaentalis. Biochem. Z. 336, 229 (1962).Google Scholar
  268. 248.
    Smith, R. H.: The Phosphatides of the Latex of Hevea brasiliensis. III. Carbohydrate and Polyhydroxy Constituents. Biochem. J. 57, 140 (1954).Google Scholar
  269. 249.
    Sodi Pallares, E. and H. M. Garza: Study of Yoloxochitl. Arch. inst, cardiol. 17, 833 (1947).Google Scholar
  270. 250.
    Soine, T. O. and G. L. Jenkins: A Phytochemical Study of Lupinus caudaius Kellog. Pharmac. Arch. 12, 65 (1941).Google Scholar
  271. 251.
    Srinivasan, P. R., J. Rothschild and D. B. Sprinson: The Enzymic Conversion of 3-Deoxy-D-ambmo-heptulosonic Acid 7-Phosphate to 5-Dehydro- quinate. J. Biol. Chem. 238, 3176 (1963).Google Scholar
  272. 252.
    Staedeler, G. und T. Frerichs: Vorkommen von Harnstoff, Taurin und Scyllit in den Organen der Plagiostomen. J. prakt. Chem. 73, 48 (1858).Google Scholar
  273. 253.
    Stern, F. und T. Zellner: Beiträge zur vergleichenden Pflanzenchemie. XI. Uber Sonchus arvensis L. Monatsh. Chem. 46, 459 (1925).Google Scholar
  274. 254.
    Stetten, M. R. and Dew. Stetten, Jr.: Biological Conversion of Inositol into Glucose. J. Biol. Chem. 164, 85 (1946).Google Scholar
  275. 255.
    Takahashi, M., T. Ito and A. Mizutani: Chemical Constituents of the Plants of Coniferae and Allied Orders. XLIV. Structure of Distichin and the Components of Taxodiaceae Plants, Metasequoia glvptostroboides and Others. J. Pharmac. Soc. Japan 80, 1557 (1960).Google Scholar
  276. 256.
    Tanret, C.: Sur deux sucres nouveaux retires du quebracho. C. R. hebd. scéances Acad. Sci. 109, 908 (1889).Google Scholar
  277. 257.
    Tatsuoka, S., S. Horii, T. Yamaguchi, H. Hitomi and A. Miyake: Chemistry of Zygomycin A: Structure of Zygomycins and A2. Antimicrobial Agents Chemother. 1962, 188 [Chem. Abstr. 59, 11641 (1963)].Google Scholar
  278. 258.
    Thonet, E. und O. Hoffmann-Ostenhof: Über die meso-Inosit-Oxygenase aus dem 5proßpilz Schwanniomyces occidentalis. Monatsh. Chem. 97, 107 (1966).Google Scholar
  279. 259.
    Touster, O.: Essential Pentosuria and the Glucuronate-Xylulose Pathway. Federat. Proc. (Amer. Soc. Exp. Biol.) 19, 977 (1960).Google Scholar
  280. 259.
    a. Tsuda, K.: Über Tetrédotoxin, Giftstoff der Bowlfische. Naturwiss. 53, 171 (1966).Google Scholar
  281. 260.
    Tsuda, K., C. Tamura, R. Tachikawa, K. Sakai, O. Amakasu, M. Kawamura and S. Ikuma: Constitution and Configuration of Tetrodoic Acid. Chem. Pharmac. Bull. 11, 1473 (1963).Google Scholar
  282. 261.
    Umezawa, S. and T. Tsuchiya: (6-Amino-6-deoxy-a-D-glucopyranosyl)- deoxystreptamine, an Antibacterial Degradation Product of Kanamycin. J. Antibiotics (Tokyo) A15, 51 (1962).Google Scholar
  283. 261a.
    Unrau, A. M. and D. T. Canvin: Biosynthesis of Plant Constituents I. The Complete Degradation of 2-Deoxy-D-ribose and Some 2-Deoxy-D-hexoses. Canad. J. Chem. 41, 607 (1963).Google Scholar
  284. 262.
    Vignais, P. M., P. V. Vignais and A. L. Lehninger: Identification of Phosphatidylinositol as a Factor Required in Mitochondrial Contraction. J. Biol. Chem. 239, 2011 (1964).Google Scholar
  285. 263.
    Vignais, P. V., P. M. Vignais and A. L. Lehninger: A Heat-stable Factor Required for Contraction of Pretreated Mitochondria. J. Biol. Chem. 239, 2002 (1964).Google Scholar
  286. 264.
    Vincent, C. et Delachanal: Sur un hydrate de carbone contenu dans le gland du chéne. C. R. hebd. sceances Acad. Sci. 104, 1855 (1887).Google Scholar
  287. 265.
    Vöhl, H.: Über den Phaseomannit und seine Identität mit dem Inosit. éebigs Ann. Chem. 101, 50 (1857).Google Scholar
  288. 266.
    Volk, W. A. and D. Pennington: The Fermentation of Inositol. J. Bacteriol. 61, 469 (1951).Google Scholar
  289. 267.
    The Fermentation of Inositol by Propionibacterium pentosaceum. J. Bacteriol. 64, 347 (1952).Google Scholar
  290. 268.
    Vrkoč, J., V. Herout und F. Sorm: Über Pflanzenstoffe. X. Isolierung der kristallinen Bestandteile der Sandstrohblume (Helychrysum arenarium MCH). Collect. Czech. Chem. Comm. 24, 3938 (1959).Google Scholar
  291. 269.
    Waal, H. L. DE: Investigations of Lotononis laxa E and Z. I. The Isolation of Pinitol, a Fatty Ester and Benzaldehyde. Onderstepoort J. Vet. Sci. 13, 229 (1939).Google Scholar
  292. 269a.
    Walker, M. S. and J. B. Walker: Enzymic Studies on the Biosynthesis of Streptomycin. Transamidination of Inosamine and Streptamine Derivatives. J. Biol. Chem. 241, 1262 (1966).Google Scholar
  293. 270.
    Weber, C. O.: Zur Chemie des Kautschuks. III. Ber. dtsch. chem. Ges. 36, 3108 (1903).Google Scholar
  294. 271.
    Weissbach, A.: The Enzymatic Determination of WYO-Inositol. Biochim. Biophys. Acta 27, 608 (1958).Google Scholar
  295. 272.
    Wickberg, B.: Isolation of 2-L-Amino 3-hydroxy-1-propane Sulfonic Acid from Polysyphonia fastigiata. Acta Chem. Scand. 11, 506 (1957).Google Scholar
  296. 273.
    Wildiers, E.: Une nouvelle substance indispensable au developement de la levure. La Cellule 18, 313 (1901).Google Scholar
  297. 274.
    Wiley, P. F., M. V. Sigal, Jr. and O. Weaver: Degradation Products of Hygromycin B. J. Organ. Chem. (USA) 27, 2793 (1962).Google Scholar
  298. 275.
    Woolley, D. W.: A New Dietary Factor Essential for the Mouse. J. Biol. Chem. 136, 113 (1940).Google Scholar
  299. 276.
    Yanagita, M.: Chemical Study of a Chinese Drug,,Kan-zui“. J. Pharmac. Soc. Japan 63, 408 (1943). (hingelaufen am 16. Dezember 1965.)Google Scholar

Copyright information

© Springer-Verlag / Wien · New York 1966

Authors and Affiliations

  • H. Kindl
    • 1
  • O. Hoffmann-Ostenhof
    • 1
  1. 1.WienDeutschland

Personalised recommendations